Ensuring ecosystem resilience is an intuitive approach to safeguard the functioning of ecosystems and hence the future provisioning of ecosystem services (ES). However, resilience is a multi‐faceted concept that is difficult to operationalize. Focusing on resilience mechanisms, such as diversity, network architectures or adaptive capacity, has recently been suggested as means to operationalize resilience. Still, the focus on mechanisms is not specific enough. We suggest a conceptual framework, resilience trinity, to facilitate management based on resilience mechanisms in three distinctive decision contexts and time‐horizons: 1) reactive, when there is an imminent threat to ES resilience and a high pressure to act, 2) adjustive, when the threat is known in general but there is still time to adapt management and 3) provident, when time horizons are very long and the nature of the threats is uncertain, leading to a low willingness to act. Resilience has different interpretations and implications at these different time horizons, which also prevail in different disciplines. Social ecology, ecology and engineering are often implicitly focussing on provident, adjustive or reactive resilience, respectively, but these different notions of resilience and their corresponding social, ecological and economic tradeoffs need to be reconciled. Otherwise, we keep risking unintended consequences of reactive actions, or shying away from provident action because of uncertainties that cannot be reduced. The suggested trinity of time horizons and their decision contexts could help ensuring that longer‐term management actions are not missed while urgent threats to ES are given priority.
SummaryFlowering time in annual plants has large fitness consequences and has been the focus of theoretical and empirical study. Previous theory has concluded that flowering time has evolved over evolutionary time to maximize fitness over a particular season length.We introduce a new model where flowering is cued by a growth-rate rule (peak nitrogen (N)). Flowering is therefore sensitive to physiological parameters and to current environmental conditions, including N availability and the presence of competitors.The model predicts that, when overall conditions are suitable for flowering, plants should never flower after 'peak N', the point during development when the whole-plant N uptake rate reaches its maximum. Our model further predicts correlations between flowering time and vegetative growth rates, and that the response to increased N depends heavily on how this extra N is made available. We compare our predictions to observations in the literature.We suggest that annual plants may have evolved to use growth-rate rules as part of the cue for flowering, allowing them to smoothly and optimally adjust their flowering time to a wide range of local conditions. If so, there are widespread implications for the study of the molecular biology behind flowering pathways.
1. Selection does not only operate in a Genotype (G) x Environment (E) context, but can also be modulated by the activities of the plant-associated players in interaction with their embedding environment in a GxGxE fashion. 2. We investigated the influence of aphid identity and intraspecific genetic variation of Vicia faba on the performance of five genotypes of pea aphid (Acyrthosiphon pisum)-with and without interaction with a heterospecific clone of vetch aphid (Megoura viciae). 3. Contrasting pea-aphid conspecific performance between the GxE and the GxGxE settings revealed strong context-dependent, genotype-specific shifts in performance, which was influenced by plant cultivar, the presence of the competitor and their interaction. 4. We also compared the competitive performance of M. viciae against each of its peaaphid counterparts. Here, competitor's genotype and abundance underlay a remarkably varied response by M. viciae across interaction scenarios. 5. We show that aphid genotype can exhibit a varying degree of risk spreading, contingent on competitor identity and the patterns of aggregation across three plant cultivars. Owing to feedback loops between species activities and selective forces acting on them, we suggest context-dependent responses by competitors that are shaped via the interplay of the co-occurring species and their biotic environment. 6. Our work highlights the importance of investigating reciprocity between competition and intraspecific genetic variation, towards a better understanding of the interaction between ecology and evolution in agroecosystems.
This paper presents mosquito mapper: an android phone application created with the goal of giving science-driven citizens the means to monitor mosquito populations in an urban environment. Mosquito mapper allows the recording of mosquito encounters as well as conditions surrounding the encounter. It also features a rudimentary identification tool. The goal of the application is to create a database and construct a map of the encounters free to consult for citizens and scientists. Such database constitutes a necessary first step for the development of useful management strategies addressing potential human health threats induced by mosquitoes. The citizen scientist may voluntarily provide other additional information on the circumstances of the encounter that may contain scientifically useful information. We describe the current features of the application, showcase the limited data gathered so far, then discuss the strengths, limits, potential scientific value and suggest possible future extensions for the application. The original city for which the application was developed is Berlin, Germany, but the application is coded in such a way that it is easily applicable to any urban environment.
Decreased reliance on pesticides can be achieved through a clever use of eco-evolutionary knowledge via intercropping economically valuable crops with companion plants that can hamper pest outbreaks. We created a greenhouse multi-layered microcosm system to test two potato peach aphid clones, performing alone or in competition, on mixes of genetically variable cultivars of cabbage, with and without onion. The onion acted as a nuisance/disturbance for the pest, which was generally for the benefit of the cabbage albeit both plants sharing space and nutrients. The onion effect was context-specific and differed by aphid genotype. Onion variable nuisance negatively affected the numbers of one aphid genotype (green) across all contexts, while the other genotype (pink) numbers were decreased in two contexts only. However, the green performed better than the pink on all cases of cabbage di-mixes despite its numbers being capped when the onion was present. Further, there was also a general aphid propensity to wander off the plant along with a differential production of winged morphs to escape the onion-affected environments. Moreover, through a comparative increase in dry mass, which was subject to onion and aphid effects, a diversity effect was found where the cabbages of fully genetically variable microcosms sustained similar final dry mass compared with non-infested microcosms. Our findings provide fresh insights into the use of multi-layered contextual designs that not only allow disentangling the relative effects of genetic variation and modes of interaction, but also help integrate their benefits into pest management in view of companion planting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.