Summary
Plant defensins are small cysteine‐rich peptides that inhibit the growth of a broad range of microbes. In this article, we describe NmDef02, a novel cDNA encoding a putative defensin isolated from Nicotiana megalosiphon upon inoculation with the tobacco blue mould pathogen Peronospora hyoscyami f.sp. tabacina. NmDef02 was heterologously expressed in the yeast Pichia pastoris, and the purified recombinant protein was found to display antimicrobial activity in vitro against important plant pathogens. Constitutive expression of NmDef02 gene in transgenic tobacco and potato plants enhanced resistance against various plant microbial pathogens, including the oomycete Phytophthora infestans, causal agent of the economically important potato late blight disease, under greenhouse and field conditions.
In order to identify tobacco (Nicotiana megalosiphon) genes involved in broad-spectrum resistance to tobacco blue mold (Peronospora hyoscyami f. sp. tabacina), suppression subtractive hybridization was used to generate cDNA from transcripts that are differentially expressed during an incompatible interaction. After differential screening by membrane-based hybridization, clones corresponding to 182 differentially expressed genes were selected, sequenced, and analyzed. The cDNA collection comprised a broad repertoire of genes associated with various processes. Northern blot analysis of a subset of these genes confirmed the differential expression patterns between the compatible and incompatible interaction. Subsequent virus-induced gene silencing (VIGS) of four genes that were found to be differentially induced was pursued. While VIGS of a lipid transfer protein gene or a glutamate decarboxylase gene in Nicotiana megalosiphon did not affect blue mold resistance, silencing of an EIL2 transcription factor gene and a glutathione synthetase gene was found to compromise the resistance of Nicotiana megalosiphon to P. hyoscyami f. sp. tabacina. Potentially, these genes can be used to engineer resistance in blue mold-susceptible tobacco cultivars.
A transient gene-expression system was developed and used to characterize promoter strength, to verify suitability of bacterial gene modifications for expression in plant cells, and to express active antibody molecules. The system is based on suspension tobacco cells transformed by Agrobacterium in a transient way. Conditions such as pre-culture of tobacco cells and the co-cultivation period were identified as determinants to achieve high expression levels. Under established conditions the activity strength of CaMV (cauliflower mosaic virus) 35 S and ToMoTV (tomato mottle taino virus) AL1 promoters were compared. A modified cry gene sequence from Bacillus thuringiensis was expressed and detected by Western-blot analysis. A monoclonal antibody against anti-(hepatitis B virus surface antigen) was produced in such quantities as to allow testing of biological activity and preliminary characterization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.