The paper presents the results of the Battle of Post-Disaster Response and Restoration (BPDRR), presented in a special session at the 1 st International WDSA/CCWI Joint Conference, held in Kingston, Ontario, in July 2018. The BPDRR problem focused on how to respond and restore water service after the occurrence of five earthquake scenarios that cause structural damage in a water distribution system. Participants were required to propose a prioritization schedule to fix the damages of each scenario while following restrictions on visibility/non visibility of damages. Each team/approach was evaluated against six performance criteria that included: 1) Time without supply for hospital/firefighting, 2) Rapidity of recovery, 3) Resilience loss, 4) Average time of no user service, 5) Number of users without service for 8 consecutive hours, and 6) Water loss. Three main types of approaches were identified from the submissions: 1) General purpose metaheuristic algorithms, 2) Greedy algorithms, and 3) Ranking-based prioritizations. All three approaches showed potential to solve the challenge efficiently. The results of the participants showed that, for this network, the impact of a largediameter pipe failure on the network is more significant than several smaller pipes failures. The location of isolation valves and the size of hydraulic segments influenced the resilience of the system during emergencies. On average, the interruptions to water supply (hospitals and firefighting) varied considerably between solutions and emergency scenarios, highlighting the importance of private water storage for emergencies. The effects of damages and repair work were more noticeable during the peak demand periods (morning and noontime) than during the low-flow periods; and tank storage helped to preserve functionality of the network in the first few hours after a simulated event.
The determination of the optimal location and settings of PRV is an operational problem that water utilities must deal with in order to reduce the real losses that are inherent to their water distribution system. In this research, a multi-objective optimization approach was developed to provide an optimal solution for the addressed problem, using the well-known metaheuristic algorithm NSGA-II and including the usage of hydraulic criteria to reduce the solution space, in order to enhance the performance of the procedure. The proposed methodology was tested using two different networks, which differ in their leakage configuration and the hydraulic parameters used for this modeling.
In recent years, there has been an increase in the frequency of urban floods as a result of three determinant factors: the reduction in systems’ capacity due to aging, a changing environment that has resulted in alterations in the hydrological cycle, and the reduction of the permeability of watersheds due to urban growth. Due to this, a question that every urban area must answer is: Are we ready to face these new challenges? The renovation of all the pipes that compose the drainage system is not a feasible solution, and, therefore, the use of new solutions is an increasing trend, leading to a new operational paradigm where water is stored in the system and released at a controlled rate. Hence, technologies, such as stormwater tanks, are being implemented in different cities. This research sought to understand how Climate Change would affect future precipitation, and based on the results, applied two different approaches to determine the optimal location and sizing of storage units, through the application of the Simulated Annealing and Pseudo-Genetic Algorithms. In this process, a strong component of computational modeling was applied in order to allow the optimization algorithms to efficiently reach near-optimal solutions. These approaches were tested in two stormwater networks at Bogotá, Colombia, considering three different rainfall scenarios.
In recent years, iterative computational techniques have been considered as the most effective methods to tackle the problem of Water Distribution System (WDS) minimum-cost design. Given their stochastic nature, these approaches involve a large number of hydraulic simulations in order to obtain suitable results. Herein, a WDS design methodology based entirely on hydraulic principles is presented. This methodology, named Optimal Power Use Surface (OPUS), focuses on both reaching low-cost designs and diminishing the number of hydraulic executions (iterations), by establishing efficient ways in which energy is dissipated and flow is distributed throughout the system. The algorithm was tested in four well known benchmark networks, previously reported in the literature. OPUS proved that following hydraulic principles is a fair choice to design WDS, showing plenty of potential in other water distribution mathematical modeling applications and offering an alternative for the extensive search process undertaken by metaheuristics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.