A facile approach for preparation of photoluminescent (PL) carbon dots (CDs) is reported. The three resulting CDs emit bright and stable red, green and blue (RGB) colors of luminescence, under a single ultraviolet-light excitation. Alterations of PL emission of these CDs are tentatively proposed to result from the difference in their particle size and nitrogen content. Interestingly, up-conversion (UC)PL of these CDs is also observed. Moreover, flexible full-color emissive PVA films can be achieved through mixing two or three CDs in the appropriate ratios. These CDs also show low cytotoxicity and excellent cellular imaging capability. The facile preparation and unique optical features make these CDs potentially useful in numerous applications such as light-emitting diodes, full-color displays, and multiplexed (UC)PL bioimaging.
Prediction of protein function is of significance in studying biological processes. One approach for function prediction is to classify a protein into functional family. Support vector machine (SVM) is a useful method for such classification, which may involve proteins with diverse sequence distribution. We have developed a web-based software, SVMProt, for SVM classification of a protein into functional family from its primary sequence. SVMProt classification system is trained from representative proteins of a number of functional families and seed proteins of Pfam curated protein families. It currently covers 54 functional families and additional families will be added in the near future. The computed accuracy for protein family classification is found to be in the range of 69.1-99.6%. SVMProt shows a certain degree of capability for the classification of distantly related proteins and homologous proteins of different function and thus may be used as a protein function prediction tool that complements sequence alignment methods. SVMProt can be accessed at http://jing.cz3.nus.edu.sg/cgi-bin/svmprot.cgi.
Long-lifetime room-temperature phosphorescence (RTP) materials are important for many applications, but they are highly challenging materials owing to the spin-forbidden nature of triplet exciton transitions. Herein, a facile, quick and gram-scale method for the preparation of ultralong RTP (URTP) carbon dots (CDs) was developed via microwave-assisted heating of ethanolamine and phosphoric acid aqueous solution. The CDs exhibit the longest RTP lifetime, 1.46 s (more than 10 s to naked eye) for CDs-based materials to date. The doping of N and P elements is critical for the URTP which is considered to be favored by a n→π* transition facilitating intersystem crossing (ISC) for effectively populating triplet excitons. In addition, possibilities of formation of hydrogen bonds in the interior of the CDs may also play a significant role in producing RTP. Potential applications of the URTP CDs in the fields of anti-counterfeiting and information protection are proposed and demonstrated.
Stimuli-responsive optical materials have received tremendous interest in the last several decades due to their numerous promising applications. Here, fluorescence emissive polymer carbon dots (F-CDs), prepared with a simple heating treatment from ethylenediamine and phosphoric acid, are found to produce unexpected ultralong room-temperature phosphorescence (URTP), which lasts for about 10 s with a lifetime of 1.39 s. This is the first example to achieve the conversion of a fluorescence material to URTP by means of an external heating stimulus. Further investigations reveal that the doping of N and P elements and self-immobilization of the excited triplet species are likely mainly responsible for the observed URTP after the heating treatment, due to the facilitation of the intersystem crossing and formation of more compact cores for effective intraparticle hydrogen bonds, respectively. Importantly, this study also demonstrates the potential for aqueous dispersion of the F-CDs as an advanced security ink for information encryption and anticounterfeiting; this is a feature that has not been reported before. This study is believed to open possibilities to extend stimuli-responsive optical materials to rarely exploited phosphorescence-relevant systems and applications, and also to provide a novel strategy to easily prepare URTP materials.
Ixabepilone demonstrated clear activity and a manageable safety profile in patients with MBC resistant to anthracycline, taxane, and capecitabine. Responses were durable and notable in patients who had not previously responded to multiple prior therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.