Atmospheric scattering model (ASM) is one of the most widely used model to describe the imaging processing of hazy images. However, we found that ASM has an intrinsic limitation which leads to a dim effect in the recovered results. In this paper, by introducing a new parameter, i.e., light absorption coefficient, into ASM, an enhanced ASM (EASM) is attained, which can address the dim effect and better model outdoor hazy scenes. Relying on this EASM, a simple yet effective grayworld-assumption-based technique called IDE is then developed to enhance the visibility of hazy images. Experimental results show that IDE eliminates the dim effect and exhibits excellent dehazing performance. It is worth mentioning that IDE does not require any training process or extra information related to scene depth, which makes it very fast and robust. Moreover, the global stretch strategy used in IDE can effectively avoid some undesirable effects in recovery results, e.g., over-enhancement, over-saturation, and mist residue, etc. Comparison between the proposed IDE and other state-of-the-art techniques reveals the superiority of IDE in terms of both dehazing quality and efficiency over all the comparable techniques.
A fundamental parameter of polluted insulator online monitoring is the leakage current, which has already been shown to be well-related to the pollution discharge of insulators. In this article, in an effort to quantitatively reflect the discharge intensity and the discharge status by the leakage current, we carried out an experimental study on artificial pollution discharge of insulators. A high-speed photographic apparatus was utilized to capture the entire process of local arcs on a porcelain insulator surface, including the arc generation, the arc development, and the flashover, for which the associated leakage current of insulators was synchronously digitized. A comparative analysis of the relation between the two-dimensional discharge image and the leakage current waveform in the process of arc generation and development shows that if the arc area on the insulator surface is relatively small and the leakage current passes through zero, the arc might completely become extinct, whereas this phenomena will not occur if the arc area is larger. In addition, the amplitude of the discharge arc area is found to be roughly proportional to the square of leakage current over the range of leakage current amplitude from 0 to 150 mA. Our results can provide an important guidance for judgment of the discharge status and the discharge intensity on insulator surfaces using the leakage current of insulators.
Plasmonic enhancement induced by metallic nanostructures is an effective strategy to improve the upconversion efficiency of lanthanide-doped nanocrystals. It is demonstrated that plasmonic enhancement of the upconversion luminescence (UCL) of single NaYF :Yb /Er /Mn nanocrystal can be tuned by tailoring scattering and absorption cross sections of gold nanorods, which is synthesized wet chemically. The assembly of the single gold nanorod and single upconversion nanocrystal is achieved by the atomic force microscope probe manipulation. By selecting two kinds of gold nanorods with similar longitudinal surface plasmon resonance wavelength but different diameters (27.3 and 46.7 nm), which extinction spectra are separately dominant by the absorption and scattering, the maximum UCL enhancement by a factor of 110 is achieved with the 46.7 nm-diameter gold nanorod, while it is 19 for the nanorod with the diameter of 27.3 nm. Such strong enhancement with the larger gold nanorod is due to stronger scattering ability and greater extent of the near-field enhancement. The enhanced UCL shows a strong dependence on the excitation polarization relative to the nanorod long axis. Time-resolved measurements and finite-difference time-domain simulations unveil that both excitation and emission processes of UCL are accelerated by the nanorod plasmonic effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.