Abstract. This paper studies how close random graphs are typically to their expectations. We interpret this question through the concentration of the adjacency and Laplacian matrices in the spectral norm. We study inhomogeneous Erdös-Rényi random graphs on n vertices, where edges form independently and possibly with different probabilities pij. Sparse random graphs whose expected degrees are o(log n) fail to concentrate; the obstruction is caused by vertices with abnormally high and low degrees. We show that concentration can be restored if we regularize the degrees of such vertices, and one can do this in various ways. As an example, let us reweight or remove enough edges to make all degrees bounded above by O(d) where d = max npij. Then we show that the resulting adjacency matrix A concentrates with the optimal rate:Similarly, if we make all degrees bounded below by d by adding weight d/n to all edges, then the resulting Laplacian concentrates with the optimal rate:Our approach is based on GrothendieckPietsch factorization, using which we construct a new decomposition of random graphs. We illustrate the concentration results with an application to the community detection problem in the analysis of networks.
Community detection is a fundamental problem in network analysis with many methods available to estimate communities. Most of these methods assume that the number of communities is known, which is often not the case in practice. We propose a simple and very fast method for estimating the number of communities based on the spectral properties of certain graph operators, such as the non-backtracking matrix and the Bethe Hessian matrix. We show that the method performs well under several models and a wide range of parameters, and is guaranteed to be consistent under several asymptotic regimes. We compare the new method to several existing methods for estimating the number of communities and show that it is both more accurate and more computationally efficient.
Community detection is one of the fundamental problems of network analysis, for which a number of methods have been proposed. Most model-based or criteria-based methods have to solve an optimization problem over a discrete set of labels to find communities, which is computationally infeasible. Some fast spectral algorithms have been proposed for specific methods or models, but only on a case-by-case basis. Here we propose a general approach for maximizing a function of a network adjacency matrix over discrete labels by projecting the set of labels onto a subspace approximating the leading eigenvectors of the expected adjacency matrix. This projection onto a low-dimensional space makes the feasible set of labels much smaller and the optimization problem much easier. We prove a general result about this method and show how to apply it to several previously proposed community detection criteria, establishing its consistency for label estimation in each case and demonstrating the fundamental connection between spectral properties of the network and various model-based approaches to community detection. Simulations and applications to real-world data are included to demonstrate our method performs well for multiple problems over a wide range of parameters.
Complex interactions between entities are often represented as edges in a network. In practice, the network is often constructed from noisy measurements and inevitably contains some errors. In this paper we consider the problem of estimating a network from multiple noisy observations where edges of the original network are recorded with both false positives and false negatives. This problem is motivated by neuroimaging applications where brain networks of a group of patients with a particular brain condition could be viewed as noisy versions of an unobserved true network corresponding to the disease. The key to optimally leveraging these multiple observations is to take advantage of network structure, and here we focus on the case where the true network contains communities. Communities are common in real networks in general and in particular are believed to be presented in brain networks. Under a community structure assumption on the truth, we derive an efficient method to estimate the noise levels and the original network, with theoretical guarantees on the convergence of our estimates. We show on synthetic networks that the performance of our method is close to an oracle method using the true parameter values, and apply our method to fMRI brain data, demonstrating that it constructs stable and plausible estimates of the population network.MSC 2010 subject classifications: Primary 62H12; secondary 62H30, 62F12.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.