Background Vascular maturity and functionality are closely associated with tumor progression and chemosensitivity. The antidiabetic agent metformin has shown its ability to inhibit tumor angiogenesis in metastatic breast cancer models. However, it remains unclear if or how metformin remodels the abnormal vasculature of metastatic breast cancer, while inhibiting angiogenesis. Methods Metastatic breast cancer models were constructed to compare microvessel density (MVD), vascular maturity and function, lung metastasis and chemosensitivity in metformin-treated or untreated mice. Protein array assay and transcriptome sequencing were performed for genetic screening. Lentiviral shRNA-PDGF-B transfection was used for observing the contribution of PDGF-B knockdown to metformin’s vascular effects. Results Metastatic breast cancers were characterized by an excessively angiogenic, immature and morphologically abnormal vasculature. Compared to control, metformin significantly reduced MVD, leakage and hypoxia, and increased vascular mural cells coverage and perfusion, namely, “vessel normalization”. Metformin at human blood concentrations had no direct effect on the migration and proliferation of cancer cells. Based on that, reduced lung metastasis of the primary tumor and improved chemosensitization by metformin were assumed to be mediated via metformin’s vascular effects. Further results of genetic screening and in vivo experiments showed that the downregulation of platelet-derived growth factor B (PDGF-B) greatly contributed to the metformin-induced vessel normalization. Conclusions These findings provide pre-clinical evidences for the vascular mechanism of metformin-induced metastasis inhibition and the chemosensitization of metastatic breast cancers. Electronic supplementary material The online version of this article (10.1186/s13046-019-1211-2) contains supplementary material, which is available to authorized users.
BackgroundCompared with open oesophagectomy (OE), minimally invasive oesophagectomy (MIO) proves to have benefits in reducing the risk of pulmonary complications for patients with resectable oesophageal cancer. However, it is unknown whether MIO has superiority in reducing the occurrence of in-hospital mortality (IHM).ObjectiveThe objective of this meta-analysis was to explore the effect of MIO vs. OE on the occurrence of in-hospital mortality (IHM).Data SourcesSources such as Medline (through December 31, 2014), Embase (through December 31, 2014), Wiley Online Library (through December 31, 2014), and the Cochrane Library (through December 31, 2014) were searched.Study SelectionData of randomized and non-randomized clinical trials related to MIO versus OE were included.InterventionsEligible studies were those that reported patients who underwent MIO procedure. The control group included patients undergoing conventional OE.Study Appraisal and Synthesis MethodsFixed or random -effects models were used to calculate summary odds ratios (ORs) or relative risks (RRs) for quantification of associations. Heterogeneity among studies was evaluated by using Cochran’s Q and I2 statistics.ResultsA total of 48 studies involving 14,311 cases of resectable oesophageal cancer were included in the meta-analysis. Compared to patients undergoing OE, patients undergoing MIO had statistically reduced occurrence of IHM (OR=0.69, 95%CI =0.55 -0.86). Patients undergoing MIO also had significantly reduced incidence of pulmonary complications (PCs) (RR=0.73, 95%CI = 0.63-0.86), pulmonary embolism (PE) (OR=0.71, 95%CI= 0.51-0.99) and arrhythmia (OR=0.79, 95%CI = 0.68-0.92). Non-significant reductions were observed among the included studies in the occurrence of anastomotic leak (AL) (OR=0.93, 95%CI =0.78-1.11), or Gastric Tip Necrosis (GTN) (OR=0.89, 95%CI =0.54-1.49).LimitationMost of the included studies were non-randomized case-control studies, with a diversity of study designs, demographics of participants and surgical intervention.ConclusionsMinimally invasive oesophagectomy (MIO) has superiority over open oesophagectomy (OE) in terms of the occurrence of in-hospital mortality (IHM) and should be the first-choice surgical procedure in esophageal surgery.
Single Nucleotide Polymorphisms (SNPs) are the most abundant and richest form of genomic polymorphism, and hence make highly favorable markers for genetic map construction and genome-wide association studies. In this study, a total of 300 rapeseed accessions (278 representative of Chinese germplasm, plus 22 outgroup accessions of different origins and ecotypes) were collected and sequenced using Specific-Locus Amplified Fragment Sequencing (SLAF-seq) technology, obtaining 660.25M reads with an average sequencing depth of 6.27 × and a mean Q30 of 85.96%. Based on the 238,711 polymorphic SLAF tags a total of 1,197,282 SNPs were discovered, and a subset of 201,817 SNPs with minor allele frequency >0.05 and integrity >0.8 were selected. Of these, 30,877 were designated SNP “hotspots,” and 41 SNP-rich genomic regions could be delineated, with 100 genes associated with plant resistance, vernalization response, and signal transduction detected in these regions. Subsequent analysis of genetic diversity, linkage disequilibrium (LD), and population structure in the 300 accessions was carried out based on the 201,817 SNPs. Nine subpopulations were observed based on the population structure analysis. Hierarchical clustering and principal component analysis divided the 300 varieties roughly in accordance with their ecotype origins. However, spring-type varieties were intermingled with semi-winter type varieties, indicating frequent hybridization between spring and semi-winter ecotypes in China. In addition, LD decay across the whole genome averaged 299 kb when r2 = 0.1, but the LD decay in the A genome (43 kb) was much shorter than in the C genome (1,455 kb), supporting the targeted introgression of the A genome from progenitor species B. rapa into Chinese rapeseed. This study also lays the foundation for genetic analysis of important agronomic traits using this rapeseed population.
Discs Large Homolog 5 (DLG5) plays an important role in the maintenance of epithelial cell polarity. Recent research showed that DLG5 is decreased in Yes-associated protein (YAP)-overexpressing cells. However, the exact relationship between DLG5 and YAP is not clear. In this study, we showed that loss of DLG5 promoted breast cancer cell proliferation by inhibiting the Hippo signaling pathway and increasing nuclear YAP expression. Furthermore, depletion of DLG5 induced epithelial-mesenchymal transition (EMT) and disrupted epithelial cell polarity, which was associated with altered expression of Scribble, ZO1, E-cadherin and N-cadherin and their mislocalization. Interestingly, we first reported that loss of DLG5 inhibited the interaction of Mst1 and Lats1 with Scribble, which was crucial for YAP activation and the transcription of TEA domain (TEAD) family members. In summary, loss of DLG5 expression promoted breast cancer malignancy by inactivating the Hippo signaling pathway and increasing nuclear YAP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.