In this tutorial we first review introductory techniques for simulation input modeling. We then identify situations in which the standard input models fail to adequately represent the available input data. In particular, we consider the cases where the input process may (i) have marginal characteristics that are not captured by standard distributions; (ii) exhibit dependence; and (iii) change over time. For case (i), we review flexible distribution systems, while we review two widely used multivariate input models for case (ii). Finally, we review nonhomogeneous Poisson processes for the last case. We focus our discussion around continuous random variables; however, when appropriate references are provided for discrete random variables. Detailed examples will be illustrated in the tutorial presentation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.