The phenolic profile of strawberry fruits (Fragaria x ananassa Duch., Rosaceae) was investigated by high-performance liquid chromatography with photodiode array detection. A peak displaying retention time and UV spectral data identical to those of phloridzin (phloretin 2'-O-beta-d-glucoside), a dihydrochalcone glucoside so far considered characteristic of apples, was monitored. For further characterization, crude extracts of strawberries were purified on polyamide, and the target compound was isolated by preparative and analytical HPLC. Structure elucidation was performed on the basis of APCI- and ESI-MS in the negative ion mode as well as by 1D and 2D NMR spectroscopy using authentic phloridzin for comparison. The d-configuration of the sugar moiety was established by HPLC analysis of the corresponding acyclic 1-deoxy-1-(N-acetyl-alpha-methylbenzylamino)alditol acetate. Apart from its chemotaxonomic relevance, this first report on the occurrence of phloridzin in strawberries is of particular interest for the authenticity control of strawberry products such as juices, jams, and fruit preparations since phloridzin has so far been used for the detection of fraudulent admixtures.
Major voltage-activated ionic channels of stellate cells in the ventral part of cochlear nucleus (CN) were largely characterized previously. However, it is not known if these cells are equipped with other ion channels apart from the voltage-sensitive ones. In the current study, it was aimed to study subunit composition and function of ATP-sensitive potassium channels (K) in stellate cells of the ventral cochlear nucleus. Subunits of K channels, Kir6.1, Kir6.2, SUR1, and SUR2, were expressed at the mRNA level and at the protein level in the mouse VCN tissue. The specific and clearly visible bands for all subunits but that for Kir6.1 were seen in Western blot. Using immunohistochemical staining technique, stellate cells were strongly labeled with SUR1 and Kir6.2 antibodies and moderately labeled with SUR2 antibody, whereas the labeling signals for Kir6.1 were too weak. In patch clamp recordings, K agonists including cromakalim (50 µM), diazoxide (0.2 mM), 3-Amino-1,2,4-triazole (ATZ) (1 mM), 2,2-Dithiobis (5-nitro pyridine) (DTNP) (330 µM), 6-Chloro-3-isopropylamino- 4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide (NNC 55-0118) (1 µM), 6-chloro-3-(methylcyclopropyl)amino-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide (NN414) (1 µM), and HO (0.88 mM) induced marked responses in stellate cells, characterized by membrane hyperpolarization which were blocked by K antagonists. Blockers of K channels, glibenclamide (0.2 mM), tolbutamide (0.1 mM) as well as 5-hydroxydecanoic acid (1 mM), and catalase (500 IU/ml) caused depolarization of stellate cells, increasing spontaneous action potential firing. In conclusion, K channels seemed to be composed dominantly of Kir 6.2 subunit and SUR1 and SUR2 and activation or inhibition of K channels regulates firing properties of stellate cells by means of influencing resting membrane potential and input resistance.
Dynamic thiol-disulfide homeostasis is considered to have critical roles in maintenance of physiological functioning. We aimed to reveal whether there is any specific aberration in thiol-disulfide homeostasis in three distinct categories of individuals, including those who 1) exercise regularly (fitness group), 2) have a sedentary lifestyle (sedentary group) and 3) are overweight or obese (overweight/ obese group). 72 male individuals were included in the study, 21 of whom were in fitness group, 28 of whom were overweight or obese and 23 of whom had a sedentary lifestyle. Plasma native thiol (-SH) and total thiol [(-SH) + (-S-S-)] levels were quantitatively determined. total thiol levels in sedentary group were significantly lower than those in overweight/obese (p<0.05) and fitness groups (p<0.001). Also, disulfide values in fitness group were significantly higher than those in sedentary and overweight/ obese groups (p<0.005, p<0.05). On the other hand, disulfide level, reduced and oxidized thiol ratios and oxidation/reduction ratio in fitness group differed significantly from the other groups (p<0.05). Thioldisulfide homeostasis varies depending on lifestyle. The results of our study indicate that higher total thiol and disulfide levels are conspicuously distinctive features of thiol-disulfide homeostasis in individuals exercising regularly.
ERG (ether-a-go-go-related gene) channels are the members of the voltage-dependent potassium channel family, which have three subtypes, as ERG1 (Kv 11.1), ERG2 (Kv 11.2), and ERG3 (Kv11.3). There is no information on ERG channels in the cochlear nucleus (CN) neurons, which is the first relay station of the auditory pathway. As occur in some of congenital long QT Syndromes (LQTS), mutation of the KCNQ11 genes for ERG channel has been reported to be accompanied by hearing loss. For that reason, we aimed to study biophysical properties and physiological importance, and contribution of ERG K currents to the formation of action potentials in the stellate and bushy neurons of the ventral cochlear nucleus (VCN). A total of 70 mice at 14-17 days old were used for this study. Electrophysiological characterization of ERG channels was performed using patch-clamp technique in the CN slices. In current clamp, ERG channel blockers, terfenadine (10 µM) and E-4031 (10 µM), were applied in both cell types. The activation, inactivation, and deactivation kinetics of the ERG channels were determined by voltage clamp. In conclusion, the findings obtained in the present study suggest that stellate and bushy neurons express ERG channels and ERG channels appear to contribute to setting action potential (AP) frequency, threshold for AP induction, and, possibly, resting membrane potentials in this cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.