Well-dispersed and uniform porous ellipsoidal-shaped bismuth oxyhalides (nominal composition: 80%BiOCl/20%BiOI) microspheres were obtained by a facile solvothermal method, in which process the use of polyvinylpyrrolidone (PVP) as template agent was found to be crucial. At 150 °C, elliptical porous particles with a particle size of 0.79 μm were formed. Instead of forming solid solutions, the study of X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM) shows that the prepared 80%BiOCl/20%BiOI microspheres are composite of BiOCl and BiOI in nature and the obtained crystallite size is about 5.6 nm. The optical bandgap of 80%BiOCl/20%BiOI was measured to be 2.93 eV, which is between the bandgap values of BiOCl and BiOI. The 80%BiOCl/20%BiOI microspheres were able to decompose various organic dyes (rhodamine B-RhB, methyl orange-MO, methylene blue-MB, methyl violet-MV) under an illuminated condition with the degradation rate in the order of RhB > MB > MV > MO, and 98% of RhB can be degraded in 90 min. Radical scavenger tests showed that photogenerated holes are the main active species for the photocatalytic decomposition of all of the tested organic dyes. Our results show that the obtained porous ellipsoidal-shaped 80%BiOCl/20%BiOI microspheres are promising for the degradation of various organic pollutants under the illumination of visible light.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.