Nanotechnology is still developing over the decades and it is commonly used in biomedical applications with the design of nanomaterials due to the several purposes. With the investigation of materials on the molecular level has increased the develop composite nanomaterials with exceptional properties using in different applications and industries. The application of these composite nanomaterials is widely used in the fields of textile, chemical, energy, defense industry, electronics, and biomedical engineering which is growing and developing on human health. Development of biosensors for the diagnosis of diseases, drug targeting and controlled release applications, medical implants and imaging techniques are the research topics of nanobiotechnology. In this review, overview of the development of nanotechnology and applications which is use of composite nanomaterials in biomedical engineering is provided.
Coronavirus disease 2019 (COVID-19) is a major public health concern currently. To date, there are no approved antiviral drugs or vaccines against this transmissible disease. This report sheds light on available information for a better understanding of clinical trials and pharmacotherapy related to COVID-19. MEDLINE, PubMed, EMBASE, Scopus databases, Web of Science, WHO, and EU clinical trial sites were used to perform comparative analysis. Information was collected on the use of therapeutic agents for human therapy in patients with COVID-19 up to May 2020. We have extracted data from 60 clinical trials. Amongst these trials, 34 were from the European Union database of clinical trials and 26 from the National Institute of Health. The data selection procedure includes active, completed, and recruitment in progress status. Most of the clinical trials are ongoing and hence, there is a lack of precise results for the treatment.There is a lack of high-quality clinical evidence. The protocol to be developed requires large randomized clinical trials with a combination of available drugs and prospective therapies. We propose the usage of a large number of cases and different statistical analyses to conduct systematic clinical trials. This could provide comprehensive information about the clinical trial and potential therapeutic progress.
Herein we describe the synthesis of Concanavalin A-poly(2-hydroxyethyl methacrylate-ethylene dimethacrylate) hydrogel membranes (via photopolymerization technique) for antibody separation from aqueous solutions. Different characterization techniques including Scanning Electron Microscopy, Fourier Transform Infrared Spectroscopy, Elemental Analysis and swelling tests revealed the highly rough morphology and spherical shape of the synthetized membranes. Attached amount of IMEO (salinization agent) onto polymeric structure and Con A binding capacity were found to be 10.85 mol/g and 3.52 mg/g, respectively. Optimum conditions for IgG adsorption such as adsorption capacity, pH and reusability profile of HMs were judiciously characterized. Maximum IgG adsorption capacity of hydrogel membrane was found to be as 26.81 mg/g. Adsorbed IgG was eluted successfully by using 2.0 M of NaCl solution. Reusability profiles of hydrogel membrane in five adsorption-desorption cycles revealed that there was no significant decrease in IgG adsorption capacity at the end of the 5th reuse. The hydrogel membranes reported here hold considerable promise as an effective sorbent system for IgG adsorption with good stability and efficient repeated usage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.