Objectives
Virtual laboratory simulations (VLSs) are computer-based tools that offer unlimited application options in scientific, medical, and engineering fields. The aim of this study was to evaluate whether VLSs are efficient learning tools and how these simulations can be integrated into laboratory practice in medical laboratory education.
Methods
In this pre-test/post-test control group study, 32 volunteers were randomly assigned to either experimental or control groups. The experimental group performed laboratory simulations based on biochemistry and microbiology and then completed a self-report survey to evaluate their satisfaction and beliefs about simulations.
Results
In the experimental group, post-test scores of each simulation were significantly elevated compared to pre-test scores; however, pre- and post-test scores of control group were statistically the same. The experimental group agreed that these simulations should be applied before theoretical lectures and laboratory practices. They also highlighted that translating from English to their native language creates difficulties in applying and understanding the simulation.
Conclusions
We emphasized that VLSs are excellent learning tools that increase not only the knowledge but also the self-motivation and focus of the students. Based on feedbacks, native language options are necessary to enable the students to achieve equality of opportunity in education.
Herein we describe the synthesis of Concanavalin A-poly(2-hydroxyethyl methacrylate-ethylene dimethacrylate) hydrogel membranes (via photopolymerization technique) for antibody separation from aqueous solutions. Different characterization techniques including Scanning Electron Microscopy, Fourier Transform Infrared Spectroscopy, Elemental Analysis and swelling tests revealed the highly rough morphology and spherical shape of the synthetized membranes. Attached amount of IMEO (salinization agent) onto polymeric structure and Con A binding capacity were found to be 10.85 mol/g and 3.52 mg/g, respectively. Optimum conditions for IgG adsorption such as adsorption capacity, pH and reusability profile of HMs were judiciously characterized. Maximum IgG adsorption capacity of hydrogel membrane was found to be as 26.81 mg/g. Adsorbed IgG was eluted successfully by using 2.0 M of NaCl solution. Reusability profiles of hydrogel membrane in five adsorption-desorption cycles revealed that there was no significant decrease in IgG adsorption capacity at the end of the 5th reuse. The hydrogel membranes reported here hold considerable promise as an effective sorbent system for IgG adsorption with good stability and efficient repeated usage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.