Background. There is increasing recognition that heart failure (HF) and cancer are conditions with a number of shared characteristics. Objectives. To explore the association between tumour biomarkers and HF outcomes. Methods. In 2,079 patients of BIOSTAT-CHF cohort, we measured six established tumour biomarkers: CA125, CA15-3, CA19-9, CEA, CYFRA 21-1 and AFP. Results. During a median follow-up of 21 months, 555 (27%) patients reached the primary end-point of all-cause mortality. CA125, CYFRA 21-1, CEA and CA19-9 levels were positively correlated with NT-proBNP quartiles (all P < 0.001, P for trend < 0.001) and were, respectively, associated with a hazard ratio of 1.17 (95% CI 1.12-1.23; P < 0.0001), 1.45 (95% CI 1.30-1.61; P < 0.0001), 1.19 (95% CI 1.09-1.30; P = 0.006) and 1.10 (95% CI 1.05-1.16; P < 0.001) for all-cause mortality after correction for BIOSTAT risk model (age, BUN, NT-proBNP, haemoglobin and beta blocker). All tumour biomarkers (except AFP) had significant associations with secondary end-points (composite of all-cause mortality and HF hospitalization, HF hospitalization, cardiovascular (CV) mortality and non-CV mortality). ROC curves showed the AUC of CYFRA 21-1 (0.64) had a noninferior AUC compared with NT-proBNP (0.68) for all-cause mortality (P = 0.08). A combination of CYFRA 21-1 and NT-proBNP (AUC = 0.71) improved the predictive value of the model for all-cause mortality (P = 0.0002 compared with NT-proBNP). Conclusions. Several established tumour biomarkers showed independent associations with indices of severity of HF and independent prognostic value for HF outcomes. This demonstrates that pathophysiological pathways sensed by these tumour biomarkers are also dysregulated in HF.
Trichostatin A (TSA), a histone deacetylase inhibitor, is widely used as an anticancer drug. Recently, TSA has been shown to exert a protective effect on ischemia/reperfusion (I/R) injury; however, the underlying mechanisms remain unclear. Forkhead box O3a (FoxO3a), a unique FoxO family member, has been shown to attenuate myocardial injury by increasing resistance to oxidative stress in mice. The present study aimed to investigate whether TSA exerts its cardioprotective effects through the FoxO3a signaling pathway. For this purpose, healthy male Wistar rats were pre-treated with TSA for 5 days before they were subjected to ligation/relaxation of the left anterior descending branch of the coronary artery and to 30 min of ischemia, followed by 24 h of reperfusion. The activities of creatine kinase (CK), lactate dehydrogenase (LDH), aspartate aminotransferase (AST) and superoxide diamutase (SOD), as well as the malondialdehyde (MDA) levels were examined. The H9c2 rat myocardial cell line was cultured in 10% FBS-containing DMEM for 24 h. The cells were incubated with/without TSA (50 nmol/l) for 1 h and then incubated with/without H2O2 (400 µM) for 2 h. Reactive oxygen species (ROS) and mitochondrial membrane potential (Δψm) were measured by probe staining in the H9c2 cells. The expression of FoxO3a, mitochondrial SOD2 and catalase was quantified by western blot analysis. The levels of H3 and H4 acetylation of the FoxO3a promoter region were examined by chromatin immunoprecipitation assay. TSA significantly reduced the myocardial infarct size and the activities of serum LDH, AST and CK in the rats. TSA also decreased the levels of MDA and increased the activities of SOD in the myocardial tissue of the rats. Consistent with the reduced injury to the TSA-treated rats, TSA significantly reduced the H2O2-induced levels of ROS and increased Δψm. In addition, TSA increased the expression of FoxO3a, SOD2 and catalase, which may be related to increasing the level of H4 acetylation of the FoxO3a promoter region. Our results thus revealed that TSA protected the myocardium from oxidative stress-mediated damage by increasing H4 acetylation of the FoxO3a promoter region, and the expression of FoxO3a, SOD2 and catalase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.