Schinzel-Giedion syndrome (SGS) is a rare developmental disorder characterized by multiple malformations, severe neurological alterations and increased risk of malignancy. SGS is caused by de novo germline mutations clustering to a 12bp hotspot in exon 4 of SETBP1. Mutations in this hotspot disrupt a degron, a signal for the regulation of protein degradation, and lead to the accumulation of SETBP1 protein. Overlapping SETBP1 hotspot mutations have been observed recurrently as somatic events in leukemia. We collected clinical information of 47 SGS patients (including 26 novel cases) with germline SETBP1 mutations and of four individuals with a milder phenotype caused by de novo germline mutations adjacent to the SETBP1 hotspot. Different mutations within and around the SETBP1 hotspot have varying effects on SETBP1 stability and protein levels in vitro and in in silico modeling. Substitutions in SETBP1 residue I871 result in a weak increase in protein levels and mutations affecting this residue are significantly more frequent in SGS than in leukemia. On the other hand, substitutions in residue D868 lead to the largest increase in protein levels. Individuals with germline mutations affecting D868 have enhanced cell proliferation in vitro and higher incidence of cancer compared to patients with other germline SETBP1 mutations. Our findings substantiate that, despite their overlap, somatic SETBP1 mutations driving malignancy are more disruptive to the degron than germline SETBP1 mutations causing SGS. Additionally, this suggests that the functional threshold for the development of cancer driven by the disruption of the SETBP1 degron is higher than for the alteration in prenatal development in SGS. Drawing on previous studies of somatic SETBP1 mutations in leukemia, our results reveal a genotype-phenotype correlation in germline SETBP1 mutations spanning a molecular, cellular and clinical phenotype.
Objective Pathogenic variants in SCN3A, encoding the voltage‐gated sodium channel subunit Nav1.3, cause severe childhood onset epilepsy and malformation of cortical development. Here, we define the spectrum of clinical, genetic, and neuroimaging features of SCN3A‐related neurodevelopmental disorder. Methods Patients were ascertained via an international collaborative network. We compared sodium channels containing wild‐type versus variant Nav1.3 subunits coexpressed with β1 and β2 subunits using whole‐cell voltage clamp electrophysiological recordings in a heterologous mammalian system (HEK‐293T cells). Results Of 22 patients with pathogenic SCN3A variants, most had treatment‐resistant epilepsy beginning in the first year of life (16/21, 76%; median onset, 2 weeks), with severe or profound developmental delay (15/20, 75%). Many, but not all (15/19, 79%), exhibited malformations of cortical development. Pathogenic variants clustered in transmembrane segments 4 to 6 of domains II to IV. Most pathogenic missense variants tested (10/11, 91%) displayed gain of channel function, with increased persistent current and/or a leftward shift in the voltage dependence of activation, and all variants associated with malformation of cortical development exhibited gain of channel function. One variant (p.Ile1468Arg) exhibited mixed effects, with gain and partial loss of function. Two variants demonstrated loss of channel function. Interpretation Our study defines SCN3A‐related neurodevelopmental disorder along a spectrum of severity, but typically including epilepsy and severe or profound developmental delay/intellectual disability. Malformations of cortical development are a characteristic feature of this unusual channelopathy syndrome, present in >75% of affected individuals. Gain of function at the channel level in developing neurons is likely an important mechanism of disease pathogenesis. ANN NEUROL 2020;88:348–362
Fanconi anaemia (FA) is a genotypically and phenotypically heterogeneous genetic condition, characterized cytogenetically by chromosomal instability and breakage secondary to impaired DNA repair mechanisms. Affected individuals typically manifest growth restriction and congenital physical abnormalities and most progress to hematological disease including bone marrow aplasia. A rare genetic subtype of FA (FA-D1) is caused by biallelic mutations in the BRCA2 gene. Affected individuals manifest severe congenital anomalies and significant pigmentary changes and are additionally at risk for early onset leukemia and certain solid organ malignancies, including Wilms tumors and brain tumors. Parents of affected individuals are obligate carriers for heterozygous BRCA2 mutations and are thus potentially at risk for adult onset cancers which fall within the hereditary breast and ovarian cancer spectrum. We present two cases of black South African patients with FA diagnosed with biallelic BRCA2 mutations and discuss the phenotypic consequences and implications for them and their families. Recognition of this severe end of the phenotypic spectrum of FA is critical in allowing for confirmation of the diagnosis as well as cascade screening and appropriate care of family members.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.