The earliest intracellular signals determined in T cell activation are local, sub-second Ca2+ microdomains (1). Here we identify a Ca2+ entry component involved in Ca2+ microdomain formation in both non-stimulated and stimulated cells. In non-stimulated cells, spontaneous small Ca2+ microdomains depend on expression of ORAI1, STIM1, and STIM2. Using T cells stably transfected with ORAI1 fused to a genetically encoded Ca2+ indicator for optical imaging spontaneous Ca2+ microdomains depending on ORAI1 were also detected. Super resolution microscopy of non-stimulated T cells resulted in identification of a circular subplasmalemmal region with a diameter of approx. 300 nm with preformed patches of co-localized ORAI1, ryanodine receptors (RYR), and STIM1. Preformed complexes of STIM1 and ORAI1 in non-stimulated cells were confirmed by co-immunoprecipitation and Förster resonance energy transfer studies. Furthermore, within the first second of T cell receptor (TCR) stimulation, Ca2+ microdomain numbers increase in the subplasmalemmal space, an effect not observed upon genetic deletion of Orai1, Stim2 or Ryr1 or upon antagonism of the Ca2+ mobilizing second messenger nicotinic acid adenine dinucleotide phosphate (NAADP). Taken together, while preformed clusters of STIM and ORAI1 allow for local Ca2+ entry events in non-stimulated cells, upon TCR activation, NAADP-evoked Ca2+ release via RYR1, in tight interplay with Ca2+ entry via ORAI1 and STIM, rapidly increases the number of Ca2+ microdomains, thereby initiating spread of Ca2+ signals deeper into the cytoplasm to promote full T cell activation.
Overwhelming activation of T cells in acute malaria is associated with severe outcomes. Thus, counter-regulation by anti-inflammatory mechanisms is indispensable for an optimal resolution of disease. Using Plasmodium berghei ANKA (PbA) infection of C57BL/6 mice, we performed a comprehensive analysis of co-inhibitory molecules expressed on CD4 + and CD8 + T cells using an unbiased cluster analysis approach. We identified similar T cell clusters co-expressing several co-inhibitory molecules like programmed cell death protein 1 (PD-1) and lymphocyte activation gene 3 (LAG-3) in the CD4 + and the CD8 + T cell compartment. Interestingly, despite expressing co-inhibitory molecules, which are associated with T cell exhaustion in chronic settings, these T cells were more functional compared to activated T cells that were negative for co-inhibitory molecules. However, T cells expressing high levels of PD-1 and LAG-3 also conferred suppressive capacity and thus resembled type I regulatory T cells. To our knowledge, this is the first description of malaria-induced CD8 + T cells with suppressive capacity. Importantly, we found an induction of T cells with a similar co-inhibitory rich phenotype in Plasmodium falciparum-infected patients. In conclusion, we demonstrate that malaria-induced T cells expressing co-inhibitory molecules are not exhausted, but acquire additional suppressive capacity, which might represent an immune regulatory pathway to prevent further activation of T cells during acute malaria.
Overwhelming activation of T cells in acute malaria is associated with severe outcomes. Thus, counter-regulation by anti-inflammatory mechanisms is indispensable for an optimal resolution of disease. Using Plasmodium berghei ANKA (PbA) infection of C57BL/6 mice, we performed a comprehensive analysis of co-inhibitory molecules expressed on CD4+ and CD8+ T cells using an unbiased cluster analysis approach. We identified similar T cell clusters co-expressing several co-inhibitory molecules like programmed cell death protein 1 (PD-1) and lymphocyte activation gene 3 (LAG-3) in the CD4+ and the CD8+ T cell compartment. Interestingly, despite expressing co-inhibitory molecules, which are associated with T cell exhaustion in chronic settings, these T cells were more functional compared to activated T cells that were negative for co-inhibitory molecules. However, T cells expressing high levels of PD-1 and LAG-3 also conferred suppressive capacity and thus resembled type I regulatory T cells. To our knowledge, this is the first description of malaria-induced CD8+ T cells with suppressive capacity. In conclusion, we demonstrate that malaria-induced T cells expressing co-inhibitory molecules are not exhausted but acquire additional suppressive capacity, which might represent an immune regulatory pathway to prevent further activation of T cells during acute malaria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.