Raman spectroscopy has proved its capability as an objective, non-invasive tool for the detection of various melanoma and non-melanoma skin cancers (NMSC) in a number of studies. Most publications are based on a Raman microspectroscopic ex vivo approach. In this in vivo clinical evaluation, we apply Raman spectroscopy using a fibre-coupled probe that allows access to a multitude of affected body sites. The probe design is optimized for epithelial sensitivity, whereby a large part of the detected signal originates from within the epidermal layer's depth down to the basal membrane where early stages of skin cancer develop. Data analysis was performed on measurements of 104 subjects scheduled for excision of lesions suspected of being malignant melanoma (MM) (n = 36), basal cell carcinoma (BCC) (n = 39) and squamous cell carcinoma (SCC) (n = 29). NMSC were discriminated from normal skin with a balanced accuracy of 73% (BCC) and 85% (SCC) using partial least squares discriminant analysis (PLS-DA). Discriminating MM and pigmented nevi (PN) resulted in a balanced accuracy of 91%. These results lie within the range of comparable in vivo studies and the accuracies achieved by trained dermatologists using dermoscopy. Discrimination proved to be unsuccessful between cancerous lesions and suspicious lesions that had been histopathologically verified as benign by dermoscopy.
All spectral regions (UV, visible and NIR) cause free radical formation in skin types II and IV-V. After 4 min of solar-simulated exposure (UV-NIR), the radical formation in skin types IV-V is 60% of that in skin type II. Therefore people with darker skin types also need solar protection.
Intrinsic Raman spectra of biological tissue are distorted by the influences of tissue absorption and scattering, which significantly challenge signal quantification. A combined Raman and spatially resolved reflectance setup is introduced to measure the absorption coefficient micro(a) and the reduced scattering coefficient micro(s) (') of the tissue, together with the Raman signals. The influence of micro(a) and micro(s) (') on the resonance Raman signal of beta-carotene is measured at 1524 cm(-1) by tissue phantom measurements and Monte Carlo simulations for micro(a)=0.01 to 10 mm(-1) and micro(s) (')=0.1 to 10 mm(-1). Both methods show that the Raman signal drops roughly proportional to 1 micro(a) for micro(a)>0.2 mm(-1) in the measurement geometry and that the influence of micro(s) (') is weaker, but not negligible. Possible correction functions dependent on the elastic diffuse reflectance are investigated to correct the Raman signal for the influence of micro(a) and micro(s) ('), provided that micro(a) and micro(s) (') are measured as well. A correction function based on the Monte Carlo simulation of Raman signals is suggested as an alternative. Both approaches strongly reduce the turbidity-induced variation of the Raman signals and allow absolute Raman scattering coefficients to be determined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.