Silva, R.; van Tussenbroek, B.I.; Escudero-Castillo, M.; Mariño-Tapia, I.; Dijkstra, H.A.; van Westen, R.M.; Pietrzak, J.D.; Candy, A.S.; Katsman, C.A.; van der Boog, C.G.; Riva, R.E.M.; Slobbe, C.; Klees, R.; Stapel, J.; van der Heide, T.; van Katwijk, M.M.; Herman, P.M.J. & Bouma, T.J. (2019). Maintaining tropical beaches with seagrass and algae: a promising alternative to engineering solutions. BioScience, 69, 136-142 is available online at: https://dx.
Sea-level rise poses severe threats to coastal and low-lying regions around the world, by exacerbating coastal erosion and flooding. Adequate sea-level projections over the next decades are important for both decision making and for the development of successful adaptation strategies in these coastal and low-lying regions to climate change. ocean components of climate models used in the most recent sea-level projections do not explicitly resolve ocean mesoscale processes. Only a few effects of these mesoscale processes are represented in these models, which leads to errors in the simulated properties of the ocean circulation that affect sea-level projections. Using the Caribbean Sea as an example region, we demonstrate a strong dependence of future sea-level change on ocean model resolution in simulations with a global climate model. the results indicate that, at least for the Caribbean Sea, adequate regional projections of sea-level change can only be obtained with ocean models which capture mesoscale processes. The ongoing increase of global sea level threatens both coastal and low-lying regions. The combination of future sea-level rise with increasing storm occurrence and intensity may exacerbate beach erosion 1. This can have severe consequences for areas which are highly dependent on their beaches, either for flood safety or economically for local tourism 2,3. Higher sea levels can also lead to changes in coastal ecosystems, and permanent submergence of land and human settlements 4. For making adequate decisions on the development of successful adaptation strategies to sea-level rise, skillful projections over the next decades are crucially important 5. By decomposing the components contributing to the satellite-observed global mean sea-level (GMSL) rise between 1993 and 2014, it was shown that the dominant contributor to GMSL is thermal expansion of the ocean 6. Over the same period, the contribution of mass loss of both glaciers and large ice sheets to GMSL rise became more important over time 6,7. On a regional scale, sea-level rise may deviate from GMSL rise 8 and can be caused by other processes than thermal expansion. For example, the dominant contributor to sea-level rise in the Caribbean is thermal expansion (40% = 0.8 mm year −1) while east of the Caribbean 9 this is ocean mass redistribution (50% = 1.7 mm year −1). Regional sea-level change induced by variations in the gravitational contribution due to large ice sheets and glacial isostatic adjustment is very homogeneous over these two regions 9. Hence, the difference in magnitude of sea-level rise in the different regions is caused by ocean sterodynamic effects (i.e. mass redistribution and thermal expansion) 10. Ocean volume conserving climate models, such as those used in the sixth coupled model inter-comparison projects (CMIP) of the Intergovernmental Panel on Climate Change (IPCC) Assessment Report, provide projections of the dynamic sea level (DSL) and sterodynamic sea level (SDSL) 22. Due to their low spatial resolution, the ocean component ...
Abstract. The mesoscale variability in the Caribbean Sea is dominated by anticyclonic eddies that are formed in the eastern part of the basin. These anticyclones intensify on their path westward while they pass the coastal upwelling region along the Venezuelan and Colombian coast. In this study, we used a regional model to show that this westward intensification of Caribbean anticyclones is steered by the advection of cold upwelling filaments. Following the thermal wind balance, the increased horizontal density gradients result in an increase in the vertical shear of the anticyclones and in their westward intensification. To assess the impact of variations in upwelling on the anticyclones, several simulations were performed in which the northward Ekman transport (and thus the upwelling strength) is altered. As expected, stronger (weaker) upwelling is associated with stronger (weaker) offshore cooling and a stronger (weaker) westward intensification of the anticyclones. Moreover, the simulations with weaker upwelling show farther advection of the Amazon and Orinoco River plumes into the basin. As a result, in these simulations the horizontal density gradients were predominantly set by horizontal salinity gradients. The importance of the horizontal density gradients driven by temperature, which are associated with the upwelling, increased with increasing upwelling strength. The results of this study highlight that both upwelling and the advection of the river plumes affect the life cycle of mesoscale eddies in the Caribbean Sea.
The intensity of major storm events generated within the Atlantic Basin is projected to rise with the warming of the oceans, which is likely to exacerbate coastal erosion. Nature-based flood defence has been proposed as a sustainable and effective solution to protect coastlines. However, the ability of natural ecosystems to withstand major storms like tropical hurricanes has yet to be thoroughly tested. Seagrass meadows both stabilise sediment and attenuate waves, providing effective coastal protection services for sandy beaches. To examine the tolerance of
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.