A metal driver fuel has been proposed for the Versatile Test Reactor (VTR). About 30 years ago, the Experimental Breeder Reactor-II (EBR-II) was the last reactor in the U.S. to utilize a full core of metal driver fuel. While the necessary knowledge to make metal fuels is well preserved and is practiced for research activities today, re-establishing a production line to support the fuel needs of a 300 MWth reactor has unique technical and engineering challenges. These challenges are the focus of a multi-laboratory and private sector 1 team that has been tasked with the responsibility to fabricate fuel for the VTR.
Nuclear energy technology developers seek to bring to market new advanced-reactor designs and new light-water reactor fuel designs, many of which would deploy fuel made from uranium with 235 U enrichment ranging from 5% to 19.75%. There is currently no commercial supply of uranium in this enrichment range, which is higher than that used in today's light-water reactors, but still lower than the safeguards limit of 20% 235 U. This limitation is a barrier to demonstration of these new nuclear energy technologies. As a means of addressing this near-term need, Department of Energy (DOE) and Idaho National Laboratory (INL) have considered how the high-assay low-enriched uranium (HALEU) product from sodium-bonded spent-fuel treatment in the INL Fuel Conditioning Facility (FCF), located at the Materials and Fuels Complex (MFC), might be fabricated into some of the new fuel designs.
The Experimental Breeder Reactor - II (EBR-II) at Argonne National Laboratory - West (ANL-W) was shutdown in September 1994 as mandated by the United States Department of Energy. Located in eastern Idaho, this sodium-cooled reactor had been in service since 1964, and was a test facility for fuels development, materials irradiation, system and control theory tests, and hardware development. The EBR-II termination activities began in October 1994, with the reactor being maintained in an industrially and radiologically safe condition for decommissioning. With the shutdown of EBR-II, its sodium coolant became a waste necessitating its reaction to a disposal form. A Sodium Process Facility (SPF), designed to convert sodium to 50 wt% sodium hydroxide, existed at the ANL-W site, but had never been operated. The SPF was upgraded to current standards and codes, and then modified in 1998 to convert the sodium to 70 wt% sodium hydroxide, a substance that solidifies at 65°C (150°F) and is acceptable for burial as low level radioactive waste in Idaho. In December 1998, the SPF began operations. Working with sodium and highly concentrated sodium hydroxide presented some unique operating and maintenance conditions. Several lessons were learned throughout the operating period. Processing of the 330 m3 (87,000 gallons) of EBR-II primary sodium, 50 m3 (13,000 gallons) of EBR-II secondary sodium, and 290 m3 (77,000 gallons) of Fermi-1 primary sodium was successfully completed in March 2001, ahead of schedule and within budget.
Unirradiated sodium bonded metal fuel and casting scrap material containing highly enriched uranium (HEU) is stored at the Materials and Fuels Complex (MFC) on the Idaho National Laboratory (INL). This material, which includes intact fuel assemblies and elements from the Fast Flux Test Facility (FFTF) and Experimental Breeder Reactor-II (EBR-II) reactors, as well as scrap material from the casting of these fuels, has no current use under the terminated reactor programs for both facilities. The Department of Energy (DOE), under the Sodium-Bonded Spent Nuclear Fuel Treatment Record of Decision (ROD), has determined that this material could be prepared and transferred to an off-site facility for processing and eventual fabrication of fuel for commercial nuclear reactors. A plan is being developed to prepare, package, and transfer this material to the DOE HEU Disposition Program Office (HDPO), located at the Y-12 National Security Complex in Oak Ridge, Tennessee. Disposition of the sodium bonded material will require separating the elemental sodium from the metallic uranium fuel. A sodium distillation process known as MEDE (Melt-Drain-Evaporate), will be used for the separation process. The casting scrap material needs to be sorted to remove any foreign material or fines that are not acceptable to the HDPO program. Once all elements have been cut and loaded into baskets, they are then loaded into an evaporation chamber as the first step in the MEDE process. The chamber will be sealed and the pressure reduced to approximately 200 mtorr. The chamber will then be heated as high as 650 °C, causing the sodium to melt and then vaporize. The vapor phase sodium will be driven into an outlet line where it is condensed and drained into a receiver vessel. Once the evaporation operation is complete, the system is de-energized and returned to atmospheric pressure. This paper describes the MEDE process as well as a general overview of the furnace systems, as necessary, to complete the MEDE process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.