ABSTRACT. Anthropogenic pressures on the Earth System have reached a scale where abrupt global environmental change can no longer be excluded. We propose a new approach to global sustainability in which we define planetary boundaries within which we expect that humanity can operate safely.Transgressing one or more planetary boundaries may be deleterious or even catastrophic due to the risk of crossing thresholds that will trigger non-linear, abrupt environmental change within continental-to planetary-scale systems. We have identified nine planetary boundaries and, drawing upon current scientific understanding, we propose quantifications for seven of them. These seven are climate change (CO 2 concentration in the atmosphere <350 ppm and/or a maximum change of +1 W m -2 in radiative forcing); ocean acidification (mean surface seawater saturation state with respect to aragonite ≥ 80% of pre-industrial levels); stratospheric ozone (<5% reduction in O 3 concentration from pre-industrial level of 290 Dobson Units); biogeochemical nitrogen (N) cycle (limit industrial and agricultural fixation of N 2 to 35 Tg N yr -1 ) and phosphorus (P) cycle (annual P inflow to oceans not to exceed 10 times the natural background weathering of P); global freshwater use (<4000 km 3 yr -1 of consumptive use of runoff resources); land system change (<15% of the ice-free land surface under cropland); and the rate at which biological diversity is lost (annual rate of <10 extinctions per million species). The two additional planetary boundaries for which we have not yet been able to determine a boundary level are chemical pollution and atmospheric aerosol loading. We estimate that humanity has already transgressed three planetary boundaries: for climate change, rate of biodiversity loss, and changes to the global nitrogen cycle. Planetary boundaries are interdependent, because transgressing one may both shift the position of other boundaries or cause them to be transgressed. The social impacts of transgressing boundaries will be a function of the social-ecological resilience of the affected societies. Our proposed boundaries are rough, first estimates only, surrounded by large uncertainties and knowledge gaps. Filling these gaps will require major advancements in Earth System and resilience science. The proposed concept of "planetary boundaries" lays the groundwork for shifting our approach to governance and management, away from the essentially sectoral analyses of limits to growth aimed at minimizing negative externalities, toward the estimation of the safe space for human development. Planetary boundaries define, as it were, the boundaries of the "planetary playing field" for humanity if we want to be sure of avoiding major human-induced environmental change on a global scale.
ABSTRACT. Resilience thinking addresses the dynamics and development of complex social-ecological systems (SES). Three aspects are central: resilience, adaptability and transformability. These aspects interrelate across multiple scales. Resilience in this context is the capacity of a SES to continually change and adapt yet remain within critical thresholds. Adaptability is part of resilience. It represents the capacity to adjust responses to changing external drivers and internal processes and thereby allow for development along the current trajectory (stability domain). Transformability is the capacity to cross thresholds into new development trajectories. Transformational change at smaller scales enables resilience at larger scales. The capacity to transform at smaller scales draws on resilience from multiple scales, making use of crises as windows of opportunity for novelty and innovation, and recombining sources of experience and knowledge to navigate social-ecological transitions. Society must seriously consider ways to foster resilience of smaller more manageable SESs that contribute to Earth System resilience and to explore options for deliberate transformation of SESs that threaten Earth System resilience.
Abstract. Indigenous groups offer alternative knowledge and perspectives based on their own locally developed practices of resource use. We surveyed the international literature to focus on the role of Traditional Ecological Knowledge in monitoring, responding to, and managing ecosystem processes and functions, with special attention to ecological resilience. Case studies revealed that there exists a diversity of local or traditional practices for ecosystem management. These include multiple species management, resource rotation, succession management, landscape patchiness management, and other ways of responding to and managing pulses and ecological surprises. Social mechanisms behind these traditional practices include a number of adaptations for the generation, accumulation, and transmission of knowledge; the use of local institutions to provide leaders/stewards and rules for social regulation; mechanisms for cultural internalization of traditional practices; and the development of appropriate world views and cultural values. Some traditional knowledge and management systems were characterized by the use of local ecological knowledge to interpret and respond to feedbacks from the environment to guide the direction of resource management. These traditional systems had certain similarities to adaptive management with its emphasis on feedback learning, and its treatment of uncertainty and unpredictability intrinsic to all ecosystems.
Emerging recognition of two fundamental errors underpinning past polices for natural resource issues heralds awareness of the need for a worldwide fundamental change in thinking and in practice of environmental management. The first error has been an implicit assumption that ecosystem responses to human use are linear, predictable and controllable. The second has been an assumption that human and natural systems can be treated independently. However, evidence that has been accumulating in diverse regions all over the world suggests that natural and social systems behave in nonlinear ways, exhibit marked thresholds in their dynamics, and that social-ecological systems act as strongly coupled, complex and evolving integrated systems. This article is a summary of a report prepared on behalf of the Environmental Advisory Council to the Swedish Government, as input to the process of the World Summit on Sustainable Development (WSSD) in Johannesburg, South Africa in 26 August 4 September 2002. We use the concept of resilience--the capacity to buffer change, learn and develop--as a framework for understanding how to sustain and enhance adaptive capacity in a complex world of rapid transformations. Two useful tools for resilience-building in social-ecological systems are structured scenarios and active adaptive management. These tools require and facilitate a social context with flexible and open institutions and multi-level governance systems that allow for learning and increase adaptive capacity without foreclosing future development options.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.