We study the semi-annual variation in geomagnetic activity, as detected in the geomagnetic indices am, aaH, AL, Dst and the four aσ indices derived for 6-hour MLT sectors (around noon, dawn, dusk and midnight). For each we compare the amplitude of the semi-annual variation, as a fraction of the overall mean, to that of the corresponding variation in power input to the magnetosphere, Pα, estimated from interplanetary observations. We demonstrate that the semi-annual variation is amplified in the geomagnetic data compared to that in Pα, by a factor that is different for each index. The largest amplification is for the Dst index (factor ~ 10) and the smallest is for the aσ index for the noon MLT sector (aσ-noon, factor ≈ 1.1). By sorting the data by the prevailing polarity of the Y-component (dawn-dusk) of the Interplanetary Magnetic Field (IMF) in the Geocentric Solar Equatorial (GSEQ) reference frame, we demonstrate that the Russell-McPherron (R-M) effect, in which a small southward IMF component in GSEQ is converted into geoeffective field by Earth’s dipole tilt, is a key factor for the semi-annual variations in both Pα and geomagnetic indices. However, the variability in the southward component in the IMF in the GSEQ frame causes more variability in power input to the magnetosphere Pα than does the R-M effect, by a factor of more than two. We show that for increasingly large geomagnetic disturbances, Pα delivered by events of large southward field in GSEQ (known to often be associated with coronal mass ejections) becomes the dominant driver and the R-M effect declines in importance and often acts to reduce geoeffectiveness for the most southward IMF in GSEQ: the semi-annual variation in large storms therefore suggests either preconditioning of the magnetosphere by average conditions or an additional effect at the equinoxes. We confirm that the very large R-M effect in the Dst index is because of a large effect at small and moderate activity levels and not in large storms. We discuss the implications of the observed “equinoctial” time-of-year (F) – Universal Time (UT) pattern of geomagnetic response, the waveform and phase of the semi-annual variations, the differences between the responses at the June and December solstices and the ratio of the amplitudes of the March and September equinox peaks. We also confirm that the UT variation in geomagnetic activity is a genuine global response. Later papers will analyse the origins and implications of the effects described.
We use the am , an, as and the aσ indices to the explore a previously overlooked factor in magnetospheric electodynamics, namely the inductive effect of diurnal motions of the Earth’s magnetic poles toward and away from the Sun caused by Earth’s rotation. Because the offset of the (eccentric dipole) geomagnetic pole from the rotational axis is roughly twice as large in the southern hemisphere compared to the northern, the effects there are predicted to be roughly twice the amplitude of those in the northern hemisphere. Hemispheric differences have previously been discussed in terms of polar ionospheric conductivities generated by solar photoionization, effects which we allow for by looking at the dipole tilt effect on the time-of-year variations of the indices. The electric field induced in a geocentric frame is shown to also be a significant factor and gives a modulation of the voltage applied by the solar wind flow in the southern hemisphere that is typically a ±30% diurnal modulation for disturbed intervals rising to ±76% in quiet times. For the northern hemisphere these are 15% and 38% modulations. Motion towards/away from the Sun reduces/enhances the directly-driven ionospheric voltages and reduces/enhances the magnetic energy stored in the tail and we estimate that approximately 10% of the effect appears in directly driven ionospheric voltages and 90% in changes of the rate of energy storage or release in the near-Earth tail. The hemispheric asymmetry in the geomagnetic pole offsets from the rotational axis is shown to be the dominant factor in driving Universal Time ( UT ) variations and hemispheric differences in geomagnetic activity. Combined with the effect of solar wind dynamic pressure and dipole tilt on the pressure balance in the near-Earth tail, the effect provides an excellent explanation of how the observed Russell-McPherron pattern with time-of-year F and UT in the driving power input into the magnetosphere is converted into the equinoctial F - UT pattern in average geomagnetic activity (after correction is made for dipole tilt effects on ionospheric conductivity), added to a pronounced UT variation with minimum at 02-10 UT . In addition, we show that the predicted and observed UT variations in average geomagnetic activity has implications for the occurrence of the largest events that also show the nett UT variation.
Aims: To elucidate differences between commonly-used mid-latitude geomagnetic indices and study quantitatively the differences in their responses to solar forcing as a function of Universal Time (UT), time-of-year (F), and solar-terrestrial activity level. To identify the strengths, weaknesses and applicability of each index and investigate ways to correct for any weaknesses without damaging their strengths. Methods: We model how the location of a geomagnetic observatory influences its sensitivity to solar forcing. This modelling for a single station can then be applied to indices that employ analytic algorithms to combine data from different stations and thereby we derive the patterns of response of the indices as a function of UT, F and activity level. The model allows for effects of solar zenith angle on ionospheric conductivity and of the station’s proximity to the midnight-sector auroral oval: it employs coefficients that are derived iteratively by comparing data from the current aa index stations (Hartland and Canberra) to simultaneous values of the am index, constructed from chains of stations in both hemispheres. This is done separately for eight overlapping bands of activity level, as quantified by the am index. Initial estimates were obtained by assuming the am response is independent of both F and UT and the coefficients so derived were then used to compute a corrected F-UT response pattern for am. This cycle was repeated until it resulted in changes in predicted values that were below the adopted uncertainty level (0.001%). The ideal response pattern of an index would be uniform and linear (i.e., independent of both UT and F and the same at all activity levels). We quantify the response uniformity using the percentage variation at any activity level, V = 100 (σS/〈S〉), where S is the index’s sensitivity at that activity level and σS is the standard deviation of S: both S and σS were computed using the eight UT ranges of the 3-hourly indices and 20 equal-width ranges of F. As an overall metric of index performance, we take an occurrence-weighted mean of V, Vav, over the eight activity-level bins. This metric would ideally be zero and a large value shows that the index compilation is introducing large spurious UT and/or F variations into the data. We also study index performance by comparisons with the SME and SML indices, compiled from a very large number of stations, and with an optimum solar wind “coupling function”, derived from simultaneous interplanetary observations. Results: It is shown that a station’s response patterns depend strongly on the level of geomagnetic activity because at low activity levels the effect of solar zenith angle on ionospheric conductivity dominates over the effect of station proximity to the midnight-sector auroral oval, whereas the converse applies at high activity levels. The metric Vav for the two-station aa index is modelled to be 8.95%, whereas for the multi-station am index it is 0.65%. The ap (and hence Kp) index cannot be analyzed directly this way because its construction employs tabular conversions, but the very low Vav for am allows us to use 〈ap〉/〈am〉 to evaluate the UT-F response patterns for ap. This yields Vav = 11.20% for ap. The same empirical test applied to the classical aa index and the new “homogenous” aa index, aaH (derived from aa using the station sensitivity model), yields Vav of, respectively, 10.62% (i.e., slightly higher than the modelled value) and 5.54%. The ap index value of Vav is shown to be high because it exaggerates the average semi-annual variation and has an annual variation giving a lower average response in northern hemisphere winter. It also contains a strong artefact UT variation. We derive an algorithm for correcting for this uneven response which gives a corrected ap value, apC, for which Vav is reduced to 1.78%. The unevenness of the ap response arises from the dominance of European stations in the network used and the fact that all data are referred to a European station (Niemegk). However, in other contexts, this is a strength of ap, because averaging similar data gives increased sensitivity and more accurate values on annual timescales, for which the UT-F response pattern is averaged out.
Space weather has long been known to approximately follow the solar cycle, with geomagnetic storms occurring more frequently at solar maximum than solar minimum. There is much debate, however, about whether the most hazardous events follow the same pattern. Extreme events – by definition – occur infrequently, and thus establishing their occurrence behaviour is difficult even with very long space-weather records. Here we use the 150-year $aa_{H}$ a a H record of global geomagnetic activity with a number of probabilistic models of geomagnetic-storm occurrence to test a range of hypotheses. We find that storms of all magnitudes occur more frequently during an active phase, centred on solar maximum, than during the quiet phase around solar minimum. We also show that the available observations are consistent with the most extreme events occurring more frequently during large solar cycles than small cycles. Finally, we report on the difference in extreme-event occurrence during odd- and even-numbered solar cycles, with events clustering earlier in even cycles and later in odd cycles. Despite the relatively few events available for study, we demonstrate that this is inconsistent with random occurrence. We interpret this finding in terms of the overlying coronal magnetic field and enhanced magnetic-field strengths in the heliosphere, which act to increase the geoeffectiveness of sheath regions ahead of extreme coronal mass ejections. Putting the three “rules” together allows the probability of extreme event occurrence for Solar Cycle 25 to be estimated, if the magnitude and length of the coming cycle can be predicted. This highlights both the feasibility and importance of solar-cycle prediction for planning and scheduling of activities and systems that are affected by extreme space weather.
Variability in the near-Earth solar wind conditions can adversely affect a number of ground-and space-based technologies. Such space-weather impacts on ground infrastructure are expected to increase primarily with geomagnetic storm intensity, but also storm duration, through time-integrated effects. Forecasting storm duration is also necessary for scheduling the resumption of safe operating of affected infrastructure. It is therefore important to understand the degree to which storm intensity and duration are correlated. The long-running, global geomagnetic disturbance index, aa, has recently been recalibrated to account for the geographic distribution of the component stations. We use this aa H index to analyse the relationship between geomagnetic storm intensity and storm duration over the past 150 years, further adding to our understanding of the climatology of geomagnetic activity. Defining storms using a peak-above-threshold approach, we find that more intense storms have longer durations, as expected, though the relationship is nonlinear. The distribution of durations for a given intensity is found to be approximately log-normal. On this basis, we provide a method to probabilistically predict storm duration given peak intensity, and test this against the aa H dataset. By considering the average profile of storms with a superposed-epoch analysis, we show that activity becomes less recurrent on the 27-day timescale with increasing intensity. This change in the dominant physical driver, and hence average profile, of geomagnetic activity with increasing threshold is likely the reason for the nonlinear behaviour of storm duration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.