[1] Understanding the influence of solar variability on the Earth's climate requires knowledge of solar variability, solar-terrestrial interactions, and the mechanisms determining the response of the Earth's climate system. We provide a summary of our current understanding in each of these three areas. Observations and mechanisms for the Sun's variability are described, including solar irradiance variations on both decadal and centennial time scales and their relation to galactic cosmic rays. Corresponding observations of variations of the Earth's climate on associated time scales are described, including variations in ozone, temperatures, winds, clouds, precipitation, and regional modes of variability such as the monsoons and the North Atlantic Oscillation. A discussion of the available solar and climate proxies is provided. Mechanisms proposed to explain these climate observations are described, including the effects of variations in solar irradiance and of charged particles. Finally, the contributions of solar variations to recent observations of global climate change are discussed.
Thin films of the high-temperature superconductor YBa 2 Cu 3 O 7 ؊ ␦ exhibit both a large critical current (the superconducting current density generally lies between 10 11 and 10 12 A m −2 at 4.2 K in zero magnetic field) and a decrease in such currents with magnetic field that point to the importance of strong vortex pinning along extended defects 1,2 . But it has hitherto been unclear which types of defect-dislocations, grain boundaries, surface corrugations and anti-phase boundaries-are responsible. Here we make use of a sequential etching technique to address this question. We find that both edge and screw dislocations, which can be mapped
The asymmetries in the convective flows, current systems, and particle precipitation in the high‐latitude dayside ionosphere which are related to the equatorial plane components of the interplanetary magnetic field (IMF) are discussed in relation to the results of several recent observational studies. It is argued that all of the effects reported to date which are ascribed to the y component of the IMF can be understood, at least qualitatively, in terms of a simple theoretical picture in which the effects result from the stresses exerted on the magnetosphere consequent on the interconnection of terrestrial and interplanetary fields. In particular, relaxation under the action of these stresses allows, in effect, a partial penetration of the IMF into the magnetospheric cavity, such that the sense of the expected asymmetry effects on closed field lines can be understood, to zeroth order, in terms of the “dipole plus uniform field” model. In particular, in response to IMF By, the dayside cusp should be displaced in longitude about noon in the same sense as By in the northern hemisphere, and in the opposite sense to By in the southern hemisphere, while simultaneously the auroral oval as a whole should be shifted in the dawn‐dusk direction in the opposite sense with respect to By. These expected displacements are found to be consistent with recently published observations. Similar considerations lead to the suggestion that the auroral oval may also undergo displacements in the noon‐midnight direction which are associated with the x component of the IMF. We show that a previously published study of the position of the auroral oval contains strong initial evidence for the existence of this effect. However, recent results on variations in the latitude of the cusp are more ambiguous. This topic therefore requires further study before definitive conclusions can be drawn.
[1] Plasma parcels are observed propagating from the Sun out to the large coronal heights monitored by the Heliospheric Imagers (HI) instruments onboard the NASA STEREO spacecraft during September 2007. The source region of these out-flowing parcels is found to corotate with the Sun and to be rooted near the western boundary of an equatorial coronal hole. These plasma enhancements evolve during their propagation through the HI cameras' fields of view and only becoming fully developed in the outer camera field of view. We provide evidence that HI is observing the formation of a Corotating Interaction Region (CIR) where fast solar wind from the equatorial coronal hole is interacting with the slow solar wind of the streamer belt located on the western edge of that coronal hole. A dense plasma parcel is also observed near the footpoint of the observed CIR at a distance less than 0.1AU from the Sun where fast wind would have not had time to catch up slow wind. We suggest that this low-lying plasma enhancement is a plasma parcel which has been disconnected from a helmet streamer and subsequently becomes embedded inside the corotating interaction region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.