Spruce budworm larvae were bioassayed against Bacillus thuringiensis Berliner to study the effect of temperature on the expression of toxicity. Temperatures between 16 and 28°C did not affect the ultimate level of toxicity (LC50). However, LT50’s increased from 2–8 days at 28°C to 11–20 days at 16°C, depending on concentration of the pathogen. When larvae were force-fed with a single dose, temperature had a similar effect on the time course of mortality without affecting the level of mortality. Feeding inhibition of force-fed larvae commenced immediately after dosing. Larvae that did not recover died without further feeding, even at lower temperatures when death occurred 2–3 weeks after dosing. Recovering larvae resumed feeding after 2 (28°C) to 6 (13°C) days. Recovered larvae took longer to develop and produced lighter pupae than untreated larvae. Our data suggest that temperature-dependent feeding and recovery did not contribute to quicker death at higher temperatures. Expression of the toxin itself appears to depend on temperature, possibly through the influence of temperature on metabolic rate of affected gut cells. Implications of these findings for the efficacy of spruce budworm control operations are discussed.
A larval population of spruce budworm, Choristoneura fumiferana (Clemens), was monitored for 5 d following aerial application of a commercial formulation of Bacillus thuringiensis Berliner subsp. kurstaki to investigate dose acquisition and expression (larval mortality, recovery, feeding, and growth) in relation to spray deposition and persistence of spray deposits. The main objective was to test if previous laboratory observations on how B. thuringiensis affects feeding and dose ingestion by spruce budworm larvae hold true under field conditions. About 40% of the treated population ingested a lethal dose within 1 d after spray application. Lethally dosed larvae died without further feeding upon transfer from treated foliage to (untreated) artificial diet. Resumption of feeding by larvae that survived the treatment was delayed relative to larvae from the control population during 3 d following spray application; during that time, normal feeding activity and larval weight gain were suppressed. Inhibited feeding by survivors appeared to prevent further dose uptake because the proportion of lethally dosed larvae in daily collections did not increase despite significant residual spray deposits in budworm feeding sites. Restoration of "normal" recovery times by the fourth day coincided with a 65–85% reduction in persistence of the pathogen on the foliage and did not result in further lethal dose acquisition, as treatment-induced mortality dropped to about 20% on the 4th and 5th days. The observations are consistent with previous laboratory observations of how B. thuringiensis affects larval feeding and with the hypothesis that feeding inhibition may be a limiting factor in the acquisition of a lethal dose.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.