1. Landscape characteristics of sixty‐two subcatchments within the Saginaw Bay Catchment of central Michigan were examined to identify relationships with stream water chemistry. Land use, land cover and elevation were quantified for both entire catchments and the upland–river ecotone (100 m stream buffer strip). Catchment and ecotone data were then empirically compared with stream water chemistry using multivariate and regression analyses. Redundancy analysis was used to partition variance among land use, geology, and the shared influence of land use and geology. 2. Major catchments dominated by rowcrop agriculture had the highest alkalinity, total dissolved solids and nitrate + nitrite concentrations. 3. Strong seasonal differences were observed in total nitrogen and nitrite + nitrate, but not in total phosphorus or suspended solids. Land use and landscape structure factors such as slope and patch density (number of land use patches per km2) accounted for most of the observed variance in summer. 4. In both autumn and summer, landscape factors accounted for much of the observed variation in total dissolved solids and alkalinity. During autumn, geological factors and the shared influence of geology/landscape structure plus land use exerted more influence than did land use alone. 5. Total phosphorus and total suspended solids were much better explained by land use within the stream ecotone in summer than in other seasons. However, total nitrogen, nitrate, orthophosphate and alkalinity were equally well explained by land use within the ecotone and throughout the whole catchment. Only total dissolved solids in summer and ammonium in autumn were explained better by the whole catchment than the ecotone. 6. Our results show that relatively coarse spatial databases can provide useful descriptors of regional water quality.
1. We used catchment and reach‐scale physical properties to predict the occurrence of specific species life history and behaviour traits of aquatic insects across fifty‐eight catchments in a mixed land use basin. Catchment‐scale attributes were derived using a geographical information system (GIS). Logistic regression techniques were used to model the relationships. 2. The reach‐scale properties were highly predictive of species traits. Fourteen of the fifteen traits had significant models with concordance values greater than 68%. Cross‐sectional area at bank full discharge, % shallow, slow‐water habitats, and % fines were the most important variables. 3. Life history and behavioural attributes were best related to reach‐scale physical features. This suggests that species traits exhibit strong relationships to local environmental conditions. 4. Catchment‐scale variables had fewer significant models with species traits (four of fifteen), however these variables may have direct or indirect influence on reach‐scale properties. 5. Catchment features, in particular surficial geology, influence macroinvertebrate assemblages through their control over channel morphology and hydrologic patterns. 6. The effects of land use were masked by geology (i.e. lacustrine clay geology and rowcrop agriculture were correlated), lack of detail in land use data and the aggregation of the species data. 7. These models reflect the coupling of local environmental conditions and the set of adaptations among the local taxa. These observations underscore the idea that habitat plays a major role in organizing stream assemblages. 8. Using these approaches, predictions can be made about the ability of various taxonomic groupings to track environmental change through time, or for projecting the impact of alternative land management scenarios. Identifying fundamental life history and other traits can improve the selection and evaluation of such indicators.
Changes in Lake Superior's fish community are reviewed from 1970 to 2000. Lake trout (Salvelinus namaycush) and lake whitefish (Coregonus clupeaformis) stocks have increased substantially and may be approaching ancestral states. Lake herring (Coregonus artedi) have also recovered, but under sporadic recruitment. Contaminant levels have declined and are in equilibrium with inputs, but toxaphene levels are higher than in all other Great Lakes. Sea lamprey (Petromyzon marinus) control, harvest limits, and stocking fostered recoveries of lake trout and allowed establishment of small nonnative salmonine populations. Natural reproduction supports most salmonine populations, therefore further stocking is not required. Nonnative salmonines will likely remain minor components of the fish community. Forage biomass has shifted from exotic rainbow smelt (Osmerus mordax) to native species, and high predation may prevent their recovery. Introductions of exotics have increased and threaten the recovering fish community. Agencies have little influence on the abundance of forage fish or the major predator, siscowet lake trout, and must now focus on habitat protection and enhancement in nearshore areas and prevent additional species introductions to further restoration. Persistence of Lake Superior's native deepwater species is in contrast to other Great Lakes where restoration will be difficult in the absence of these ecologically important fishes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.