By performing cryogenic laser spectroscopy under a scanning probe electrode that induces a local electric field, we have resolved two individual fluorescent molecules separated by 12 nanometers in an organic crystal. The two molecules undergo a strong coherent dipole-dipole coupling that produces entangled sub- and superradiant states. Under intense laser illumination, both molecules are excited via a two-photon transition, and the fluorescence from this doubly excited system displays photon bunching. Our experimental scheme can be used to optically resolve molecules at the nanometer scale and to manipulate the degree of entanglement among them.
The primary goal of this study is to derive ice particle terminal velocities from micron to centimeter sizes and for atmospheric pressures covering the range 200–1000 hPa from data spanning a wide range of locations, temperatures, and altitudes and to parameterize the results for use in cloud through cloud models. The study uses data from 10 field programs spanning the temperature range −86° to 0°C and encompassing a total of about 800 000 km of cloud horizontal pathlengths and includes measurements of ice particle size distributions (PSDs) and direct measurements of the ice water content (IWC). The necessary ice particle variables are derived using variables that are interconnected rather than varying independently from observations reported in the literature. A secondary goal of the study is to quantify the properties of ice cloud particle ensembles over a wide range of temperatures to further the understanding of how ice particle ensembles and ice clouds develop.
Functional forms for the PSDs and mass– and area–dimensional relationships are developed from the observations and summarized in a table. The PSDs are found to be nearly exponential at temperatures from about −40° to −10°C although deviations from exponentiality are noted outside of this range. It is demonstrated that previous pressure-dependent corrections to ice fall speeds lead to overestimated terminal velocities for particles smaller than 1 mm, particularly so for sizes below 100 μm, with consequent effects on modeled lifetimes of cold ice clouds.
This study summarizes recent improvements in the development of bulk scattering/absorption models at solar wavelengths. The approach combines microphysical measurements from various field campaigns with single-scattering properties for nine habits including droxtals, plates, solid/hollow columns, solid/hollow bullet rosettes, and several types of aggregates. Microphysical measurements are incorporated from a number of recent field campaigns in both the Northern and Southern Hemisphere. A set of 12 815 particle size distributions is used for which T cld # 2408C. The ice water content in the microphysical data spans six orders of magnitude. For evaluation, a library of ice-particle single-scattering properties is employed for 101 wavelengths between 0.4 and 2.24 mm. The library includes the full phase matrix as well as properties for smooth, moderately roughened, and severely roughened particles. Habit mixtures are developed for generalized cirrus, midlatitude cirrus, and deep tropical convection. The single-scattering properties are integrated over particle size and wavelength using an assumed habit mixture to develop bulk scattering and absorption properties. In comparison with global Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP) data, models built with severely roughened particles compare best for all habit mixtures. The assumption of smooth particles provided the largest departure from CALIOP measurements. The use of roughened rather than smooth particles to infer optical thickness and effective diameter from satellite imagery such as the Moderate Resolution Imaging Spectroradiometer (MODIS) will result in a decrease in optical thickness and an increase in particle size.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.