[1] The nature of ridge-flank hydrothermal circulation guided by basement outcrops protruding through thick sediments is constrained on the eastern flank of the Juan de Fuca Ridge using combined bathymetric, seismic, and thermal observations and analytical and numerical calculations of coupled fluid-heat flow. Observational data near the western edge of the survey area indicate that young, cool hydrothermal fluids circulate rapidly through upper basement, probably both across-strike and along-strike of dominant structural trends. Data from the eastern end of survey coverage (Second Ridge (SR)) indicate that upper basement is regionally nearly isothermal. A small number of basement outcrops in this area host focused hydrothermal discharge, as do additional basement outcrops to the north and south of the SR area. Numerical models of individual recharging and discharging outcrops, patterned after the Baby Bare and Grizzly Bare outcrops, suggest that local convection alone cannot explain observed patterns of seafloor heat flux near these features. Forced-flow simulations show that reasonable rates of hydrothermal recharge and discharge, inferred from independent observations, can explain nearby seafloor heat flux, provided that upper basement permeability within and near the outcrops falls within a range of 10 À13 to 10 À11 m 2 . Freeflow simulations of fluid circulation between paired outcrops separated by 50 km, as are Baby Bare and Grizzly Bare outcrops, are most consistent with observations when regional basement permeability is 10 À11 to 10 À10 m 2 . These simulations illustrate how sensitive these systems are to selection of appropriate properties and boundary and initial conditions.
11dfnWorks is a parallelized computational suite to generate three-dimensional discrete fracture networks (DFN) and simulate flow and transport. Developed at Los Alamos National Laboratory over the past five years, it has been used to study flow and transport in fractured media at scales ranging from millimeters to kilometers. The networks are created and meshed using dfnGen, which combines fram (the feature rejection algorithm for meshing) methodology to stochastically generate three-dimensional DFNs with the LaGriT meshing toolbox to create a high-quality computational mesh representation. The representation produces a conforming Delaunay triangulation suitable for high performance computing finite volume solvers in an intrinsically parallel fashion. Flow through the network is simulated in dfnFlow, which utilizes the massively parallel subsurface flow and reactive transport finite volume code pflotran. A Lagrangian approach to simulating transport through the DFN is adopted within dfnTrans to determine pathlines and solute transport through the DFN. Example applications of this suite in the areas of nuclear waste repository science, hydraulic fracturing and CO 2 sequestration are also included.
While the existence of relatively fresh groundwater sequestered within permeable, porous sediments beneath the Atlantic continental shelf of North and South America has been known for some time, these waters have never been assessed as a potential resource. This fresh water was likely emplaced during Pleistocene sea-level low stands when the shelf was exposed to meteoric recharge and by elevated recharge in areas overrun by the Laurentide ice sheet at high latitudes. To test this hypothesis, we present results from a high-resolution paleohydrologic model of groundwater flow, heat and solute transport, ice sheet loading, and sea level fluctuations for the continental shelf from New Jersey to Maine over the last 2 million years. Our analysis suggests that the presence of fresh to brackish water within shallow Miocene sands more than 100 km offshore of New Jersey was facilitated by discharge of submarine springs along Baltimore and Hudson Canyons where these shallow aquifers crop out. Recharge rates four times modern levels were computed for portions of New England's continental shelf that were overrun by the Laurentide ice sheet during the last glacial maximum. We estimate the volume of emplaced Pleistocene continental shelf fresh water (less than 1 ppt) to be 1300 km(3) in New England. We also present estimates of continental shelf fresh water resources for the U.S. Atlantic eastern seaboard (10(4) km(3)) and passive margins globally (3 x 10(5) km(3)). The simulation results support the hypothesis that offshore fresh water is a potentially valuable, albeit nonrenewable resource for coastal megacities faced with growing water shortages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.