Bleaching gels with 10% HO applied in small teeth for short periods may be an interesting alternative to obtain whitening effectiveness without causing toxicity to pulp cells, which may be able to reduce the tooth hypersensitivity claimed by patients.
Although the chemical activation of H2O2 by adding FeSO4 to the bleaching agent improved the bleaching effectiveness, this metal ion has no significant protective effect against pulp cell cytotoxicity.
SUMMARY
Objectives:
The aim of this study was to evaluate the effect of horseradish peroxidase (HRP) on the release of free radicals, bleaching effectiveness, and indirect cytotoxicity of a 35% hydrogen peroxide (HP) bleaching gel.
Methods and Materials:
First, HP degradation rates and free radical release were evaluated for 35% HP in contact or not with HRP (10 mg/mL). The bleaching gel associated or not with HRP was then applied (3 × 15 minutes) to enamel/dentin discs adapted to artificial pulp chambers, and the culture medium in contact with dentin surfaces (extract) was collected and exposed to cultured odontoblast-like cells. Membrane damage and viability of cells as well as oxidative stress were evaluated. Residual HP/free radical diffusion was quantified, and bleaching effectiveness (ΔE) was assessed. Unbleached discs served as negative controls.
Results:
The addition of HRP to the 35% HP bleaching gel enhanced the release of free radicals in comparison with plain HP gel. The 35% HP-mediated cytotoxicity significantly decreased with HRP in the bleaching gel and was associated with reduced HP/free radical diffusion through the enamel/dentin discs. ΔE values increased every bleaching session for HRP-containing gel relative to positive control, accelerating the whitening outcome.
Conclusion:
The enzymatic activation of a 35% HP bleaching gel with HRP accelerated HP degradation mediated by intensification of free radical release. This effect optimized whitening outcome as well as minimized residual HP and free radical diffusion through enamel and dentin, decreasing the harmful effects on odontoblast-like cells.
Objective: This study was designed for the chemical activation of a 35% hydrogen peroxide (H 2 O 2) bleaching gel to increase its whitening effectiveness and reduce its toxicity. Methodology: First, the bleaching gel-associated or not with ferrous sulfate (FS), manganese chloride (MC), peroxidase (PR), or catalase (CT)-was applied (3x 15 min) to enamel/dentin discs adapted to artificial pulp chambers. Then, odontoblast-like MDPC-23 cells were exposed for 1 h to the extracts (culture medium + components released from the product), for the assessment of viability (MTT assay) and oxidative stress (H 2 DCFDA). Residual H2O2 and bleaching effectiveness (DE) were also evaluated. Data were analyzed with one-way ANOVA complemented with Tukey's test (n=8. p<0.05). Results: All chemically activated groups minimized MDPC-23 oxidative stress generation; however, significantly higher cell viability was detected for MC, PR, and CT than for plain 35% H2O2 gel. Nevertheless, FS, MC, PR, and CT reduced the amount of residual H2O2 and increased bleaching effectiveness. Conclusion: Chemical activation of 35% H2O2 gel with MC, PR, and CT minimized residual H2O2 and pulp cell toxicity; but PR duplicated the whitening potential of the bleaching gel after a single 45-minute session.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.