Epithelial cells play an important role in reparative events. Therefore, therapies that can stimulate the proliferation and metabolism of these cells could accelerate the healing process. To evaluate the effects of low-level laser therapy (LLLT), human keratinocytes were irradiated with an InGaAsP diode laser prototype (LASERTable; 780 ± 3 nm; 40 mW) using 0.5, 1.5, 3, 5, and 7 J/cm2 energy doses. Irradiations were done every 24 h totaling three applications. Evaluation of cell metabolism (MTT assay) showed that LLLT with all energy doses promoted an increase of cell metabolism, being more effective for 0.5, 1.5, and 3 J/cm2. The highest cell counts (Trypan blue assay) were observed with 0.5, 3, and 5 J/cm2. No statistically significant difference for total protein (TP) production was observed and cell morphology analysis by scanning electron microscopy revealed that LLLT did not promote morphological alterations on the keratinocytes. Real-time polymerase chain reaction (qPCR) revealed that LLLT also promoted an increase of type I collagen (Col-I) and vascular endothelial growth factor (VEGF) gene expression, especially for 1.5 J/cm2, but no change on fibroblast growth factor-2 (FGF-2) expression was observed. LLLT at energy doses ranging from 0.5 to 3 J/cm2 promoted the most significant biostimulatory effects on cultured keratinocytes.
The aim of this study was to determine adequate energy doses using specific parameters of LLLT to produce biostimulatory effects on human gingival fibroblast culture. Cells (3 × 104 cells/cm2) were seeded on 24-well acrylic plates using plain DMEM supplemented with 10% fetal bovine serum. After 48-hour incubation with 5% CO2 at 37°C, cells were irradiated with a InGaAsP diode laser prototype (LASERTable; 780 ± 3 nm; 40 mW) with energy doses of 0.5, 1.5, 3, 5, and 7 J/cm2. Cells were irradiated every 24 h totalizing 3 applications. Twenty-four hours after the last irradiation, cell metabolism was evaluated by the MTT assay and the two most effective doses (0.5 and 3 J/cm2) were selected to evaluate the cell number (trypan blue assay) and the cell migration capacity (wound healing assay; transwell migration assay). Data were analyzed by the Kruskal-Wallis and Mann-Whitney nonparametric tests with statistical significance of 5%. Irradiation of the fibroblasts with 0.5 and 3 J/cm2 resulted in significant increase in cell metabolism compared with the nonrradiated group (P < 0.05). Both energy doses promoted significant increase in the cell number as well as in cell migration (P < 0.05). These results demonstrate that, under the tested conditions, LLLT promoted biostimulation of fibroblasts in vitro.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.