Pollinator responses to floral density have important implications for plant biology. In particular, a decline in pollinator visitation at low density can cause an Allee effect (a positive relation of fitness to density) in the plant population, which heightens that population's vulnerability to extinction. Empiricists have reported a variety of relations between flower or plant density and pollinator visitation rates. Here I develop and test a model that provides explanations for this diversity. The model assumes that pollinators distribute themselves between a focal patch of flowers and the surrounding environment so as to maximize foraging success. The resulting relation of per-flower visitation rate to focal-patch floral density is nonlinear, with positive effects at low floral densities and weaker or negative effects at higher densities. The relation is influenced by floral density in the surrounding environment and traits of both the plants and their pollinators. In a field experiment, floral density of Holocarpha virgata ssp. virgata had a nonlinear effect on per-flower visitation that was largely consistent with the model's predictions. By producing testable hypotheses based on biologically reasonable assumptions, this model serves as a starting point for explaining an important facet of plant-pollinator mutualisms.
Responses of flower-visiting animals to floral density can alter interactions between plants, influencing a variety of biological processes, including plant population dynamics and the evolution of flowering phenology. Many studies have found effects of floral or plant density on pollinator visitation rates at patch scales, but little is known about responses of flower visitors to floral densities at larger scales. Here, I present data from an observational field study in which I measured the effects of floral density on visitation to the annual composite Holocarpha virgata at both patch (4 m(2)) and site (12.6 ha) spatial scales. The species composition of flower visitors changed with floral density, and did so in different ways at the two scales. At the site scale, average floral density within patches of H. virgata or within patches of all summer-flowering species combined had a significant positive effect on per-flowerhead visitation by the long-horned bee Melissodes lupina and no significant effects on visitation by any other taxa. At the patch scale, per-flowerhead visitation by honeybees significantly increased whereas visitation by M. lupina often decreased with increasing floral density. For both species, responses to patch-scale floral density were strongest when site-scale floral density was high. The scale-dependence of flower visitor responses to floral density and the interactions between site- and patch-scale effects of floral density observed in this study underscore the importance of improving our understanding of pollinators' responses to floral density at population scales.
Within-species variation in traits such as petal size or color often provides reliable information to pollinators about the rewards offered to them by flowers. In spite of potential disadvantages of allowing pollinators to discriminate against less-rewarding flowers, examples of informative floral signals are diverse in form and widely distributed across plant taxa, apparently having evolved repeatedly in different lineages. Although hypotheses about the adaptive value of providing reward information have been proposed and tested in a few cases, a unified effort to understand the evolutionary mechanisms favoring informative floral signals has yet to emerge. This review describes the diversity of ways in which floral signals can be linked with floral rewards within plant species and discusses the constraints and selective pressures on floral signal-reward relationships. It focuses particularly on how information about floral rewards can influence pollinator behavior and how those behavioral changes may, in turn, affect plant fitness, selecting either for providing or withholding reward information. Most of the hypotheses about the evolution of floral signal-reward relationships are, as yet, untested, and the review identifies promising research directions for addressing these considerable gaps in knowledge. The advantages and disadvantages of sharing floral reward information with pollinators likely play an important role in floral trait evolution, and opportunities abound to further our understanding of this neglected aspect of floral signaling.
Floral density often influences the species composition of flower visitors. This variation in visitor species composition could have significant effects on pollination success and plant fitness but is poorly understood, especially in the many pollination guilds dominated by non-territorial species. This paper presents a foraging model that explores how flower visitors with diverse traits should distribute themselves across resource patches differing in floral density. The model predicts that species with low flower search speeds and low flower handling costs compared to competitors will usually dominate dense flower patches. In addition, amongst flower visitors that have lower energy expenditure rates while handling flowers than while traveling, species maximizing energetic efficiency are typically associated with dense flower patches whereas those maximizing net rate of energy intake are associated with sparse patches. The model is able to predict some key aspects of a previously-observed effect of floral density on species composition of flower visitors to the yellowflower tarweed (Holocarpha virgata). By providing insights into how flower visitors’ traits shape the effects of floral density on the species composition of flower visitors, this study makes an important step towards understanding how pollinator diversity influences relationships between plant density and plant fitness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.