Several neurological diseases, includingThe importance of ␣-synuclein to the pathogenesis of Parkinson disease (PD) 4 and the related disorder, dementia with Lewy bodies (DLB), is suggested by its association with Lewy bodies and Lewy neurites, the inclusions that characterize these diseases (1)(2)(3), and demonstrated by the existence of mutations that cause syndromes mimicking sporadic PD and DLB (4 -6). Furthermore, three separate mutations cause early onset forms of PD and DLB. It is particularly telling that duplications or triplications of the gene (7-9), which increase levels of ␣-synuclein with no alteration in sequence, also cause PD or DLB.␣-Synuclein has been reported to be phosphorylated on serine residues, at Ser-87 and Ser-129 (10), although to date only the Ser-129 phosphorylation has been identified in the central nervous system (11,12). Phosphorylation at tyrosine residues has been observed by some investigators (13,14) but not by others (10 -12). Phosphorylation at Ser-129 (p-Ser-129) is of particular interest because the majority of synuclein in Lewy bodies contains this modification (15). In addition, p-Ser-129 was found to be the most extensive and consistent modification in a survey of synuclein in Lewy bodies (11). Results have been mixed from studies investigating the function of phosphorylation using S129A and S129D mutations to respectively block and mimic the modification. Although the phosphorylation mimic was associated with pathology in studies in Drosophila (16) and in transgenic mouse models (17, 18), studies using adeno-associated virus vectors to overexpress ␣-synuclein in rat substantia nigra found an exacerbation of pathology with the S129A mutation, whereas the S129D mutation was benign, if not protective (19). Interpretation of these studies is complicated by a recent study showing that the S129D and S129A mutations themselves have effects on the aggregation properties of ␣-synuclein independent of their effects on phosphorylation, with the S129A mutation stimulating fibril formation (20). Clearly, determination of the role of p-Ser-129 phosphorylation would be helped by identification of the responsible kinase. In addition, identification will provide a pathologically relevant way to increase phosphorylation in a cell or animal model.Several kinases have been proposed to phosphorylate ␣-synuclein, including casein kinases 1 and 2 (10, 12, 21) and members of the G-protein-coupled receptor kinase family (22). In this report, we offer evidence that a member of the polo-like kinase (PLK) family, PLK2 (or serum-inducible kinase, SNK), functions as an ␣-synuclein kinase. The ability of PLK2 to directly phosphorylate ␣-synuclein at Ser-129 is established by overexpression in cell culture and by in vitro reaction with the purified kinase. We show that PLK2 phosphorylates ␣-synuclein in cells, including primary neuronal cultures, using a series of kinase inhibitors as well as inhibition of expression with RNA interference. In addition, inhibitor and knock-out studies in mouse brai...
Increased retinal vascular permeability contributes to macular edema, a leading cause of vision loss in eye pathologies such as diabetic retinopathy, age-related macular degeneration, and central retinal vein occlusions. Pathological changes in vascular permeability are driven by growth factors such as VEGF and pro-inflammatory cytokines such as TNF-α. Identifying the pro-barrier mechanisms that block vascular permeability and restore the blood-retinal barrier (BRB) may lead to new therapies. The cAMP-dependent guanine nucleotide exchange factor (EPAC) exchange-protein directly activated by cAMP promotes exchange of GTP in the small GTPase Rap1. Rap1 enhances barrier properties in human umbilical endothelial cells by promoting adherens junction assembly. We hypothesized that the EPAC-Rap1 signaling pathway may regulate the tight junction complex of the BRB and may restore barrier properties after cytokine-induced permeability. Here, we show that stimulating EPAC or Rap1 activation can prevent or reverse VEGF- or TNF-α-induced permeability in cell culture and Moreover, EPAC activation inhibited VEGF receptor (VEGFR) signaling through the Ras/MEK/ERK pathway. We also found that Rap1B knockdown or an EPAC antagonist increases endothelial permeability and that VEGF has no additive effect, suggesting a common pathway. Furthermore, GTP-bound Rap1 promoted tight junction assembly, and loss of Rap1B led to loss of junctional border organization. Collectively, our results indicate that the EPAC-Rap1 pathway helps maintain basal barrier properties in the retinal vascular endothelium and activation of the EPAC-Rap1 pathway may therefore represent a potential therapeutic strategy to restore the BRB.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.