Prostasomes are small vesicles of prostatic origin contained in human semen. Their composition is peculiar under many aspects. Cholesterol is abundant and many proteins are endowed with enzymatic or other activities. The function of prostasomes has been amply debated and several hypotheses have been put forward. The liquefaction of semen, spermatozoa motility, antibacterial activity and immunological functions have been related to prostasomes. Under certain aspects, prostasomes resemble synaptosomes. The fusion of prostasomes to spermatozoa enriches spermatozoa with cholesterol and causes bursts of cytoplasmic sperm calcium. The interaction of spermatozoa and prostasomes should be limited to vagina since prostasomes are immobile and do not follow spermatozoa in the superior female genital tract. Calcium bursts would increase spermatozoa motility, where cholesterol would decapacitate spermatozoa, so preventing untimely activation. Since spermatozoa receive many different molecules from prostasomes, additional effects are also possible. Prostasomes makes spermatozoa more apt to be activated by progesterone in the proximity of the ovum. Therefore, the fusion between spermatozoa and prostasomes would influence spermatozoa behaviour under many aspects and might be relevant for fecundation. The richness of molecular species in prostasomes is amazing and these small vesicles are expected to lead to many more discoveries in the field of human reproduction.
We studied the cellular and subcellular distribution of S-100b protein in normal, crushed, and transected rat sciatic nerves by an immunocytochemical procedure. In uninjured nerves, S-100b protein was restricted to the cytoplasm and membranes of Schwann cells, with no reaction product present in the nucleus or in axons. Similar images were seen from the first to the thirtieth day after the crush in activated Schwann cells during the degeneration period, i.e., up to the seventh post-lesion day, and in normal Schwann cells reappearing during the regeneration period, i.e., after the seventh post-lesion day, in the zone of the crush and proximal and distal to it. By the technique employed, there seemed to be no differences in the intensity of the immune reaction product in normal and activated Schwann cells. Also, similar images were seen in the proximal stump of transected nerves. Only a slight S-100b protein immune reaction product could be observed in the rare activated Schwann cells present in the distal stump around the seventh post-lesion day, the majority of cell types being represented by fibroblasts and elongated cells at this stage and thereafter. By immunochemical assays, similar results as those presented here have been reported and interpreted as indicative of the presence of S-100 protein in axons or, alternatively, of axonal control over expression of S-100 protein in Schwann cells. Our immunocytochemical data clearly show that the strong reduction in the S-100 protein content of the distal stump of transected nerves is owing to the paucity of Schwann cells and to the decrease in the S-100 protein content of these cells, rather than to degeneration of axons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.