Summarising the complexity of a country's economy in a single number is the holy grail for scholars engaging in data-based economics. In a field where the Gross Domestic Product remains the preferred indicator for many, economic complexity measures, aiming at uncovering the productive knowledge of countries, have been stirring the pot in the past few years. The commonly used methodologies to measure economic complexity produce contrasting results, undermining their acceptance and applications. Here we show that these methodologiesapparently conflicting on fundamental aspectscan be reconciled by adopting a neat mathematical perspective based on linear-algebra tools within a bipartite-networks framework. The obtained results shed new light on the potential of economic complexity to trace and forecast countries' innovation potential and to interpret the temporal dynamics of economic growth, possibly paving the way to a micro-foundation of the field.
The correlation between cholera epidemics and climatic drivers, in particular seasonal tropical rainfall, has been studied in a variety of contexts owing to its documented relevance. Several mechanistic models of cholera transmission have included rainfall as a driver by focusing on two possible transmission pathways: either by increasing exposure to contaminated water (e.g. due to worsening sanitary conditions during water excess), or water contamination by freshly excreted bacteria (e.g. due to washout of open-air defecation sites or overflows). Our study assesses the explanatory power of these different modeling structures by formal model comparison using deterministic and stochastic models of the type susceptible-infected-recovered-bacteria (SIRB). The incorporation of rainfall effects is generalized using a nonlinear function that can increase or decrease the relative importance of the large precipitation events. Our modelling framework is tested against the daily
Typing “Yesterday” into the search-bar of your browser provides a long list of websites with, in top places, a link to a video by The Beatles. The order your browser shows its search results is a notable example of the use of network centrality. Centrality measures the importance of the nodes in a network and it plays a crucial role in several fields, ranging from sociology to engineering, and from biology to economics. Many centrality metrics are available. However, these measures are generally based on ad hoc assumptions, and there is no commonly accepted way to compare the effectiveness and reliability of different metrics. Here we propose a new perspective where centrality definition arises naturally from the most basic feature of a network, its adjacency matrix. Following this perspective, different centrality measures naturally emerge, including degree, eigenvector, and hub-authority centrality. Within this theoretical framework, the effectiveness of different metrics is evaluated and compared. Tests on a large set of networks show that the standard centrality metrics perform unsatisfactorily, highlighting intrinsic limitations for describing the centrality of nodes in complex networks. More informative multi-component centrality metrics are proposed as the natural extension of standard metrics.
In 2015, the United Nations established the Agenda 2030 for sustainable development, addressing the major challenges the world faces and introducing the 17 Sustainable Development Goals (SDGs). How are countries performing in their challenge toward sustainable development? We address this question by treating countries and Goals as a complex bipartite network. While network science has been used to unveil the interconnections among the Goals, it has been poorly exploited to rank countries for their achievements. In this work, we show that the network representation of the countries-SDGs relations as a bipartite system allows one to recover aggregate scores of countries’ capacity to cope with SDGs as the solutions of a network’s centrality exercise. While the Goals are all equally important by definition, interesting differences self-emerge when non-standard centrality metrics, borrowed from economic complexity, are adopted. Innovation and Climate Action stand as contrasting Goals to be accomplished, with countries facing the well-known trade-offs between economic and environmental issues even in addressing the Agenda. In conclusion, the complexity of countries’ paths toward sustainable development cannot be fully understood by resorting to a single, multipurpose ranking indicator, while multi-variable analyses shed new light on the present and future of sustainable development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.