It is well established that age-related decline of the biological capacity of a woman to reproduce is primarily related to the poor developmental potential of her gametes. This renders female ageing the most significant determinant of success in IVF. Starting with a reference picture of the main molecular and cellular failures of aged oocytes, granulosa cells and follicular microenvironment, this review focuses on age-related biochemical mechanisms underlying these changes. According to the most relevant concept of ageing, age-associated malfuction results from physiological accumulation of irreparable damage to biomolecules as an unavoidable side effect of normal metabolism. More than a decade after the free radical theory of ovarian ageing, biological and clinical research supporting the involvement of oxidative injuries in follicle ageing is discussed. Looking for the aetiology of oxidative stress, we consider the effect of ageing on ovarian and follicular vascularization. Then, we propose a potential role of advanced glycation end-products known to be involved in the physiological ageing of most tissues and organs. We conclude that future investigation of age-related molecular damage in the different ovarian components will be imperative in order to evaluate the possibility to save or rescue the developmental potential of aged oocytes.
The work was supported by the Ministero dell'Università e della Ricerca Scientifica (MIUR) to C.T., F.A., C.D., A.M.D. The authors declare no conflict of interest.
The aim of this work was to study the antioxidant enzymatic defences in human follicular fluid and investigate their possible changes during reproductive ageing. To this end, we tested the specific activities and protein expression of enzymes involved in reactive oxygen species (ROS) scavenging and in detoxification of ROS byproducts in follicular fluid from young (range 27-32 years, n = 12) and older (range 39-45 years, n = 12) women participating in an IVF programme. Results show that all the tested enzymes [superoxide dismutase (SOD), catalase, glutathione peroxidase, glutathione transferase, glutathione reductase] were significantly expressed in human follicular fluid. However, when the two age groups were compared, we found that follicular fluid from older women exhibited a reduced level of glutathione transferase and catalase activities and a higher level of SOD activity. Immunoblot analysis revealed that ageing was associated with decreased protein expression of GST Pi isoform and did not affect SOD and catalase protein expression. Taken together, these findings indicate that reproductive ageing is accompanied by a change in the antioxidant enzymatic pattern that could impair ROS scavenging efficiency in the follicular environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.