In this paper we study the asymptotic behaviour of the solutions in linear models of population dynamics by means of the basic reproduction number R 0 . Our aim is to give a practical approach to the computation of the basic reproduction number in continuous-time population models structured by age and/or space. The procedure is different depending on whether the density of newborns per time unit and the density of population belong to the same functional space or not. Three infinite-dimensional examples are illustrated: a transport model for a cell population, a model of spatial diffusion of individuals in a habitat, and a model of migration of individuals between age-structured local populations. For each model, we have highlighted the possible advantages of computing R 0 instead of the Malthusian parameter.
A spatially structured linear model of the growth of intestinal bacteria is analysed from two generational viewpoints. Firstly, the basic reproduction number associated with the bacterial population, i.e. the expected number of daughter cells per bacterium, is given explicitly in terms of biological parameters. Secondly, an alternative quantity is introduced based on the number of bacteria produced within the intestine by one bacterium originally in the external media. The latter depends on the parameters in a simpler way and provides more biological insight than the standard reproduction number, allowing the design of experimental procedures. Both quantities coincide and are equal to one at the extinction threshold, below which the bacterial population becomes extinct. Optimal values of both reproduction numbers are derived assuming parameter trade-offs.
The temporo-spatial relationship between the three organs (lung, spleen and lymph node) involved during the initial stages of Mycobacterium tuberculosis infection has been poorly studied. As such, we performed an experimental study to evaluate the bacillary load in each organ after aerosol or intravenous infection and developed a mathematical approach using the data obtained in order to extract conclusions. The results showed that higher bacillary doses result in an earlier IFN-γ response, that a certain bacillary load (BL) needs to be reached to trigger the IFN-γ response, and that control of the BL is not immediate after onset of the IFN-γ response, which might be a consequence of the spatial dimension. This study may have an important impact when it comes to designing new vaccine candidates as it suggests that triggering an earlier IFN-γ response might not guarantee good infection control, and therefore that additional properties should be considered for these candidates.
To describe the dynamics of a size-structured population and its unstructured resource, we formulate bookkeeping equations in two different ways. The first, called the PDE formulation, is rather standard. It employs a first-order partial differential equation, with a non-local boundary condition, for the size-density of the consumer, coupled to an ordinary differential equation for the resource concentration. The second is called the DELAY formulation and employs a renewal equation for the population level birth rate of the consumer, coupled to a delay differential equation for the (history of the) resource concentration. With each of the two formulations we associate a constructively defined semigroup of nonlinear solution operators. The two semigroups are intertwined by a non-invertible operator. In this paper, we delineate in what sense the two semigroups are equivalent. In particular, we (i) identify conditions on both the model ingredients and the choice of state space that guarantee that the intertwining operator is surjective, (ii) focus on large time behavior and (iii) consider full orbits, i.e. orbits defined for time running from [Formula: see text] to [Formula: see text]. Conceptually, the PDE formulation is by far the most natural one. It has, however, the technical drawback that the solution operators are not differentiable, precluding rigorous linearization. (The underlying reason for the lack of differentiability is exactly the same as in the case of state-dependent delay equations: we need to differentiate with respect to a quantity that appears as argument of a function that may not be differentiable.) For the delay formulation, one can (under certain conditions concerning the model ingredients) prove the differentiability of the solution operators and establish the Principle of Linearized Stability. Next, the equivalence of the two formulations yields a rather indirect proof of this principle for the PDE formulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.