An objective analysis of the human movement can help both clinical assessment and sports performance. Kinovea is a free 2D motion analysis software that can be used to measure kinematic parameters. This low-cost technology has been used in sports sciences, as well as in the clinical and research fields. One interesting tool is that it can measure an object (or person) passing in front of the camera, taking into account the perspective between the camera and the recorded object. Although it has been validated as a tool to assess time-related variables, few studies assessed its validity compared to a Gold Standard; furthermore, its reliability in different perspectives has not been previously assessed. The main objective of this study is to determine the validity of the Kinovea software compared to AutoCAD, and its intra and inter-rater reliability in obtaining coordinates data; a second objective is to compare their results at 4 different perspectives (90°, 75°, 60° and 45°) and to assess the inter and intra rater reliability at each perspective. For this purpose, a wire structure figure in the shape of a human lower limb was designed and measured in AutoCAD; it was then recorded during a pendular motion with a video-camera placed at distance of 5 m and analyzed with Kinovea in the 4 perspectives (90°, 75°, 60° and 45°). Each frame was examined by three observers who made two attempts. A multiple approach was applied involving the analysis of the systematic error, with a two-way ANOVA 2x4; the relative reliability with Intraclass Correlation Coefficient (ICC) and the Coefficient of Variance (CV) (95% confidence interval); and the absolute reliability with the Standard Error (SE). The results indicate that the Kinovea software is a valid and reliable tool that is able to measure accurately at distances up to 5 m from the object and at an angle range of 90°–45°. Nevertheless, for optimum results an angle of 90° is suggested.
Background Accurate measurement of pain is required to improve its management and in research. The visual analog scale (VAS) on paper format has been shown to be an accurate, valid, reliable, and reproducible way to measure pain intensity. However, some limitations should be considered, some of which can be implemented with the introduction of an electronic VAS version, suitable to be used both in a tablet and a smartphone. Objective This study aimed to validate a new method of recording pain level by comparing the traditional paper VAS with the pain level module on the newly designed Interactive Clinics app. Methods A prospective observational cross-sectional study was designed. The sample consisted of 102 participants aged 18 to 65 years. A Force Dial FDK 20 algometer (Wagner Instruments) was employed to induce mild pressure symptoms on the participants’ thumbs. Pain was measured using a paper VAS (10 cm line) and the app. Results Intermethod reliability estimated by ICC(3,1) was 0.86 with a 95% confidence interval of 0.81 to 0.90, indicating good reliability. Intramethod reliability estimated by ICCa(3,1) was 0.86 with a 95% confidence interval of 0.81 to 0.90, also indicating good reliability. Bland-Altman analysis showed a difference of 0.175 (0.49), and limits of agreement ranged from –0.79 to 1.14. Conclusions The pain level module on the app is highly reliable and interchangeable with the paper VAS version. This tool could potentially help clinicians and researchers precisely assess pain in a simple, economic way with the use of a ubiquitous technology.
Clinical rehabilitation and sports performance analysis both require the objectification of 12 movement. Kinovea © is a free 2D motion analysis software that enables the establishment of 13 kinematics parameters. This low-cost technology has been used in sports sciences, as well as
Background Accurate quantification of pain in a clinical setting is vital. The use of an electronic pain scale enables data to be collected, analyzed, and utilized much faster compared with traditional paper-based scales. The advancement of smart technology in pediatric and adult pain evaluation may offer opportunities to introduce easy-to-use and reliable pain assessment methods within different clinical settings. If promptly introduced within different pediatric and adult pain clinic services, validated and easily accessible mobile health pain apps may lead to early pain detection, promoting improvement in patient’s quality of life and leading to potentially less time off from school or work. Objective This cross-sectional observational study aimed to investigate the interchangeability of an electronic visual analog scale (eVAS) app with a traditional paper visual analog scale (pVAS) among Australian children, adolescents, and adults for pain evaluation. Methods Healthy participants (age range 10-75 years) were recruited from a sporting club and a secondary school in Melbourne (Australia). The data collection process involved application of pressure (8.5 kg/cm2) from a Wagner Force Dial FDK 20 to the midpoint of the thumb. The pressure was applied twice with a 5-minute interval. At each pressure application, participants were asked to randomly record their pain perception using the “eVAS” accessible via the “Interactive Clinics” app and the traditional pVAS. Statistical analysis was conducted to determine intermethod and intramethod reliabilities. Results Overall, 109 healthy participants were recruited. Adults (mean age 42.43 years, SD 14.50 years) had excellent reliability, with an intraclass correlation coefficient (ICC) of 0.94 (95% CI 0.91-0.96). Children and adolescents (mean age 13.91 years, SD 2.89 years) had moderate-to-good intermethod and intramethod reliabilities, with an ICC of 0.80 (95% CI 0.70-0.87) and average ICC of 0.80 (95% CI 0.69-0.87), respectively. Conclusions The eVAS app appears to be interchangeable compared with the traditional pVAS among children, adolescents, and adults. This pain evaluation method may offer new opportunities to introduce user-friendly and validated pain assessment apps for patients, clinicians, and allied health professionals.
BackgroundIn-shoe foot orthoses improve conditions such as plantar heel pain (fasciitis), probably due to their ability to raise the medial longitudinal arch of the foot and lower the stress on the plantar tissues. Increasingly the arch-profile form of the in-shoe foot orthosis is being incorporated into sandal footwear, providing an alternative footwear option for those who require an orthosis. The purpose of this study was to evaluate if a sandal that incorporates the arch-profile of an in-shoe foot orthosis does indeed raise the medial longitudinal arch.MethodsThree commercially available non-medical devices (contoured and flat sandal, prefabricated in-shoe orthosis) worn by healthy individuals were studied in two independent experiments, one using radiographic measurements in Australia (n = 11, 6 female, age 26.1 ± 4.3 yrs, BMI 22.0 ± 2.4 kg/m2) and the other utilising anthropometric measures in the USA (n = 10, 6 female, age 26.3 ± 3.8 yrs, BMI 23.5 ± 3.7 kg/m2). A barefoot condition was also measured. Dorsal arch height was measured in both experiments, as well as in subtalar neutral in the anthropometric experiment. One way repeated measures ANOVA with follow up Bonferroni-corrected pairwise comparisons were used to test differences between the conditions (contoured and flat sandal, orthosis, barefoot). Mean difference and 95% confidence intervals (CI) and standardised mean differences (SMD) were also calculated.ResultsThe contoured sandal significantly increased dorsal arch height compared to barefoot and flat sandal in both the anthropometric and radiographic experiments with SMD ranging from 0.95 (mean difference 5.1 mm (CI: 0.3, 1.6)) to 1.8 (4.3 mm (1.9, 6.6)). There were small differences between the contoured sandal and orthosis of 1.9 mm (0.6, 3.3) in the radiographic experiment and 1.2 mm (−0.4, 0.9) in the anthropometric experiment. The contoured sandal approximated the subtalar neutral position (0.4 mm (−0.5, 0.7)).ConclusionsMedial longitudinal arch height is elevated by contoured sandals and approximates subtalar joint neutral position of the foot and that achieved by an orthosis. Practitioners wanting to increase the medial longitudinal arch can do so with either an orthosis or a contoured sandal that includes the raised arch profile form of an orthosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.