Purpose: Cancer treatment is limited by inaccurate predictors of patient-specific therapeutic response. Therefore, some patients are exposed to unnecessary side effects and delays in starting effective therapy. A clinical tool that predicts treatment sensitivity for individual patients is needed. Experimental Design: Patient-derived cancer organoids were derived across multiple histologies. The histologic characteristics, mutation profile, clonal structure, and response to chemotherapy and radiation were assessed using bright-field and optical metabolic imaging on spheroid and single-cell levels, respectively. Results: We demonstrate that patient-derived cancer organoids represent the cancers from which they were derived, including key histologic and molecular features. These cultures were generated from numerous cancers, various biopsy sample types, and in different clinical settings. Next-generation sequencing reveals the presence of subclonal populations within the organoid cultures. These cultures allow for the detection of clonal heterogeneity with a greater sensitivity than bulk tumor sequencing. Optical metabolic imaging of these organoids provides cell-level quantification of treatment response and tumor heterogeneity allowing for resolution of therapeutic differences between patient samples. Using this technology, we prospectively predict treatment response for a patient with metastatic colorectal cancer. Conclusions: These studies add to the literature demonstrating feasibility to grow clinical patient-derived organotypic cultures for treatment effectiveness testing. Together, these culture methods and response assessment techniques hold great promise to predict treatment sensitivity for patients with cancer undergoing chemotherapy and/or radiation.
New tools are needed to match cancer patients with effective treatments. Patient-derived organoids offer a high-throughput platform to personalize treatments and discover novel therapies. Currently, methods to evaluate drug response in organoids are limited because they overlook cellular heterogeneity. In this study, non-invasive optical metabolic imaging (OMI) of cellular heterogeneity was characterized in breast cancer (BC) and pancreatic cancer (PC) patient-derived organoids. Baseline heterogeneity was analyzed for each patient, demonstrating that single-cell techniques, such as OMI, are required to capture the complete picture of heterogeneity present in a sample. Treatment-induced changes in heterogeneity were also analyzed, further demonstrating that these measurements greatly complement current techniques that only gauge average cellular response. Finally, OMI of cellular heterogeneity in organoids was evaluated as a predictor of clinical treatment response for the first time. Organoids were treated with the same drugs as the patient's prescribed regimen, and OMI measurements of heterogeneity were compared to patient outcome. OMI distinguished subpopulations of cells with divergent and dynamic responses to treatment in living organoids without the use of labels or dyes. OMI of organoids agreed with long-term therapeutic response in patients. With these capabilities, OMI could serve as a sensitive high-throughput tool to identify optimal therapies for individual patients, and to develop new effective therapies that address cellular heterogeneity in cancer.
OBJECTIVES: Physicians increasingly share ambulatory visit notes with patients to meet new federal requirements, and evidence suggests patient experiences improve without overburdening physicians. Whether sharing inpatient notes with parents of hospitalized children yields similar outcomes is unknown. In this pilot study, we evaluated parent and physician perceptions of sharing notes with parents during hospitalization. METHODS: Parents of children aged <12 years admitted to a hospitalist service at a tertiary children’s hospital in April 2019 were offered real-time access to their child’s admission and daily progress notes on a bedside inpatient portal (MyChart Bedside). Upon discharge, ambulatory OpenNotes survey items assessed parent and physician (attendings and interns) perceptions of note sharing. RESULTS: In all, 25 parents and their children’s discharging attending and intern physicians participated. Parents agreed that the information in notes was useful and helped them remember their child’s care plan (100%), prepare for rounds (96%), and feel in control (91%). Although many physicians (34%) expressed concern that notes would confuse parents, no parent reported that notes were confusing. Some physicians perceived that they spent more time writing and/or editing notes (28%) or that their job was more difficult (15%). Satisfaction with sharing was highest among parents (100%), followed by attendings (81%) and interns (35%). CONCLUSIONS: Parents all valued having access to physicians’ notes during their child’s hospital stay; however, some physicians remained concerned about the potential negative consequences of sharing. Comparative effectiveness studies are needed to evaluate the effect of note sharing on outcomes for hospitalized children, families, and staff.
New tools are needed to match pancreatic cancer patients with effective treatments. Patient-derived organoids offer a high-throughput platform to personalize treatments and discover novel therapies.Currently, methods to evaluate drug response in organoids are limited because they cannot be completed in a clinically relevant time frame, only evaluate response at one time point, and most importantly, overlook cellular heterogeneity. In this study, non-invasive optical metabolic imaging (OMI) of cellular heterogeneity in organoids was evaluated as a predictor of clinical treatment response. Organoids were generated from fresh patient tissue samples acquired during surgery and treated with the same drugs as the patient's prescribed adjuvant treatment. OMI measurements of heterogeneity in response to this treatment were compared to later patient response, specifically to the time to recurrence following surgery.OMI was sensitive to patient-specific treatment response in as little as 24 hours. OMI distinguished subpopulations of cells with divergent and dynamic responses to treatment in living organoids without the use of labels or dyes. OMI of organoids agreed with long-term therapeutic response in patients. With these capabilities, OMI could serve as a sensitive high-throughput tool to identify optimal therapies for individual pancreatic cancer patients, and to develop new effective therapies that address cellular heterogeneity in pancreatic cancer. SignificanceOMI can non-invasively quantify cellular-level heterogeneity in treatment response within pancreatic cancer patient-derived organoids, which could enable high-throughput drug screens to personalize treatment for individual patients and to accelerate drug discovery.
Tumor heterogeneity is predicted to confer inferior clinical outcomes, however modeling heterogeneity in a manner that still represents the tumor of origin remains a formidable challenge. Sequencing technologies are limited in their ability to identify rare subclonal populations and predict response to the multitude of available treatments for patients. Patient-derived organotypic cultures have significantly improved the modeling of cancer biology by faithfully representing the molecular features of primary malignant tissues. Patient-derived cancer organoid (PCO) cultures contain numerous individual organoids with the potential to recapitulate heterogeneity, though PCOs are most commonly studied in bulk ignoring any diversity in the molecular profile or treatment response. Here we demonstrate the advantage of evaluating individual PCOs in conjunction with cellular level optical metabolic imaging to characterize the largely ignored heterogeneity within these cultures to predict clinical therapeutic response, identify subclonal populations, and determine patient specific mechanisms of resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.