Patients with Hodgkin's disease can develop paraneoplastic cerebellar ataxia because of the generation of autoantibodies against mGluR1 (mGluR1-Abs). Yet, the pathophysiological mechanisms underlying their motor coordination deficits remain to be elucidated. Here, we show that application of IgG purified from the patients' serum to cerebellar slices of mice acutely reduces the basal activity of Purkinje cells, whereas application to the flocculus of mice in vivo evokes acute disturbances in the performance of their compensatory eye movements. In addition, the mGluR1-Abs block induction of long-term depression in cultured mouse Purkinje cells, whereas the cerebellar motor learning behavior of the patients is affected in that they show impaired adaptation of their saccadic eye movements. Finally, postmortem analysis of the cerebellum of a paraneoplastic cerebellar ataxia patient showed that the number of Purkinje cells was significantly reduced by approximately two thirds compared with three controls. We conclude that autoantibodies against mGluR1 can cause cerebellar motor coordination deficits caused by a combination of rapid effects on both acute and plastic responses of Purkinje cells and chronic degenerative effects.
Anemia is common in patients who have both heart failure and chronic kidney disease, and there is an association between anemia and progression of both diseases. The main causes of anemia are deficient production of erythropoietin (EPO), iron deficiency, and chronic disease with endogenous EPO resistance. EPO has been successfully used for over a decade to treat anemia in patients with chronic kidney disease. Less obvious are the safety and efficacy of EPO treatment in patients with both heart failure and renal disease. Up to 10% of patients receiving EPO are hyporesponsive to therapy and require large doses of the agent. Several mechanisms could explain resistance to endogenous and exogenous EPO. Proinflammatory cytokines antagonize the action of EPO by exerting an inhibitory effect on erythroid progenitor cells and by disrupting iron metabolism (a process in which hepcidin has a central role). EPO resistance might also be caused by inflammation, which has a negative effect on EPO receptors. Furthermore, neocytolysis could have a role. As resistance to exogenous EPO is associated with an increased risk of death, it is important to understand how cardiorenal failure affects EPO production and function.
Heart and kidney interactions are fascinating, in the sense that failure of the one organ strongly affects the function of the other. In this review paper, we analyze how principal driving forces for glomerular filtration and renal blood flow are changed in heart failure. Moreover, renal autoregulation and modulation of neurohumoral factors, which can both have repercussions on renal function, are analyzed. Two paradigms seem to apply. One is that the renin-angiotensin system (RAS), the sympathetic nervous system (SNS), and extracellular volume control are the three main determinants of renal function in heart failure. The other is that the classical paradigm to analyze renal dysfunction that is widely applied in nephrology also applies to the pathophysiology of heart failure: pre-renal, intra-renal, and post-renal alterations together determine glomerular filtration. At variance with the classical paradigm is that the most important post-renal factor in heart failure seems renal venous hypertension that, by increasing renal tubular pressure, decreases GFR. When different pharmacological strategies to inhibit the RAS and SNS and to assist renal volume control are considered, there is a painful lack in knowledge about how widely applied drugs affect primary driving forces for ultrafiltration, renal autoregulation, and neurohumoral control. We call for more clinical physiological studies.
Progression of vascular damage in essential, renovascular and malignant hypertension is associated with a rise in circulating levels of P-selectins and, to a lesser extent, E-selectins, whereas levels of intracellular adhesion molecule 1, vascular cell adhesion molecule and von Willebrand factor are elevated only in diseases associated with acute severe vascular damage, including malignant hypertension. Our data suggest that selectins may be useful as indicators of vascular damage in hypertension.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.