The main purpose of structural health monitoring (SHM) is to obtain information about the state of a structure, in order to guide bridge management decisions. Nevertheless, in practice, once a rigorous estimate of the structural state is available, decisions are usually made based on the decision maker's intuition or experience. In this paper, we present the implementation of expected utility theory (EUT) in those civil engineering decision problems in which decision makers have to act based on the output of SHM. EUT is an analytical quantitative framework that allows the identification of the financially most convenient decisions, based on the possible outcomes of each action and on the probabilities of each structural state occurring. The advantage of the presented implementation is the optimization of decision strategies in SHM. In the manuscript, we first formalize the solution of single-stage decision processes, in which the decision maker has to take only one action. Then, we formalize the solution of multi-stage decision processes, in which multiple actions may be taken over time. Finally, using an example based on a case study, we describe the variables involved in the analysis of SHM decision problems, discuss the possible results and address the issues that may arise in the application of EUT in real-life settings.
The recent developments in measurement technology have led to the installation of efficient monitoring systems on many bridges and other structures all over the world. Nowadays, more and more structures have been built and instrumented with sensors. However, calibration and installation of sensors remain challenging tasks. In this paper, we use a case study, Adige Bridge, in order to present a low-cost method for the calibration and installation of elasto-magnetic sensors on cable-stayed bridges. Elasto-magnetic sensors enable monitoring of cable stress. The sensor installation took place two years after the bridge construction. The calibration was conducted in two phases: one in the laboratory and the other one on site. In the laboratory, a sensor was built around a segment of cable that was identical to those of the cable-stayed bridge. Then, the sample was subjected to a defined tension force. The sensor response was compared with the applied load. Experimental results showed that the relationship between load and magnetic permeability does not depend on the sensor fabrication process except for an offset. The determination of this offset required in situ calibration after installation. In order to perform the in situ calibration without removing the cables from the bridge, vibration tests were carried out for the estimation of the cables’ tensions. At the end of the paper, we show and discuss one year of data from the elasto-magnetic sensors. Calibration results demonstrate the simplicity of the installation of these sensors on existing bridges and new structures.
Only very recently our community has acknowledged that the benefit of Structural Health Monitoring (SHM) can be properly quantified using the concept of Value of Information (VoI). The VoI is the difference between the utilities of operating the structure with and without the monitoring system. Typically, it is assumed that there is one decision maker for all decisions, i.e. deciding on both the investment on the monitoring system as well as the operation of the structure. The aim of this work is to formalize a rational method for quantifying the Value of Information when two different actors are involved in the decision chain: the manager, who makes decisions regarding the structure, based on monitoring data; and the owner, who chooses whether to install the monitoring system or not, before having access to these data. The two decision makers, even if both rational and exposed to the same background information, may still act differently because of their different appetites for risk. To illustrate how this framework works, we evaluate a hypothetical VoI for the Streicker Bridge, a pedestrian bridge in Princeton University campus equipped with a fiber optic sensing system, assuming that two fictional characters, Malcolm and Ophelia, are involved: Malcolm is the manager who decides whether to keep the bridge open or close it following to an incident; Ophelia is the owner who decides whether to invest on a monitoring system to help Malcolm making the right decision. We demonstrate that when manager and owner are two different individual, the benefit of monitoring could be greater or smaller than when all the decisions are made by the same individual. Under appropriate conditions, the monitoring VoI could even be negative, meaning that the owner is willing to pay to prevent the manager to use the monitoring system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.