We live in an environment of ever-growing demand for transport networks, which also have ageing infrastructure. However, it is not feasible to replace all the infrastructural assets that have surpassed their service lives. The commonly established alternative is increasing their durability by means of Structural Health Monitoring (SHM)-based maintenance and serviceability. Amongst the multitude of approaches to SHM, the Digital Twin model is gaining increasing attention. This model is a digital reconstruction (the Digital Twin) of a real-life asset (the Physical Twin) that, in contrast to other digital models, is frequently and automatically updated using data sampled by a sensor network deployed on the latter. This tool can provide infrastructure managers with functionalities to monitor and optimize their asset stock and to make informed and data-based decisions, in the context of day-to-day operative conditions and after extreme events. These data not only include sensor data, but also include regularly revalidated structural reliability indices formulated on the grounds of the frequently updated Digital Twin model. The technology can be even pushed as far as performing structural behavioral predictions and automatically compensating for them. The present exploratory review covers the key Digital Twin aspects—its usefulness, modus operandi, application, etc.—and proves the suitability of Distributed Sensing as its network sensor component.
Only very recently our community has acknowledged that the benefit of Structural Health Monitoring (SHM) can be properly quantified using the concept of Value of Information (VoI). The VoI is the difference between the utilities of operating the structure with and without the monitoring system. Typically, it is assumed that there is one decision maker for all decisions, i.e. deciding on both the investment on the monitoring system as well as the operation of the structure. The aim of this work is to formalize a rational method for quantifying the Value of Information when two different actors are involved in the decision chain: the manager, who makes decisions regarding the structure, based on monitoring data; and the owner, who chooses whether to install the monitoring system or not, before having access to these data. The two decision makers, even if both rational and exposed to the same background information, may still act differently because of their different appetites for risk. To illustrate how this framework works, we evaluate a hypothetical VoI for the Streicker Bridge, a pedestrian bridge in Princeton University campus equipped with a fiber optic sensing system, assuming that two fictional characters, Malcolm and Ophelia, are involved: Malcolm is the manager who decides whether to keep the bridge open or close it following to an incident; Ophelia is the owner who decides whether to invest on a monitoring system to help Malcolm making the right decision. We demonstrate that when manager and owner are two different individual, the benefit of monitoring could be greater or smaller than when all the decisions are made by the same individual. Under appropriate conditions, the monitoring VoI could even be negative, meaning that the owner is willing to pay to prevent the manager to use the monitoring system.
The increasing number of bridges approaching their design life has prompted researchers and operators to develop innovative structural health monitoring (SHM) techniques. An acoustic emissions (AE) method is a passive SHM approach based on the detection of elastic waves in structural components generated by damages, such as the initiation and propagation of cracks in concrete and the failure of steel wires. In this paper, we discuss the effectiveness of AE techniques by analyzing records acquired during a load test on a full-size prestressed concrete bridge span. The bridge is a 1968 structure currently decommissioned but perfectly representative, by type, age, and deterioration state of similar bridges in operation on the Italian highway network. It underwent a sequence of loading and unloading cycles with a progressively increasing load up to failure. We analyzed the AE signals recorded during the load test and examined how far their features (number of hits, amplitude, signal strength, and peak frequency) allow us to detect, quantify, and classify damages. We conclude that AE can be successfully used in permanent monitoring to provide information on the cracking state and the maximum load withstood. They can also be used as a non-destructive technique to recognize whether a structural member is cracked. Finally, we noticed that AE allow classifying different types of damage, although further experiments are needed to establish and validate a robust classification procedure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.