Despite their clinical significance, characterization of balanced chromosomal abnormalities (BCAs) has largely been restricted to cytogenetic resolution. We explored the landscape of BCAs at nucleotide resolution in 273 subjects with a spectrum of congenital anomalies. Whole-genome sequencing revised 93% of karyotypes and revealed complexity that was cryptic to karyotyping in 21% of BCAs, highlighting the limitations of conventional cytogenetic approaches. At least 33.9% of BCAs resulted in gene disruption that likely contributed to the developmental phenotype, 5.2% were associated with pathogenic genomic imbalances, and 7.3% disrupted topologically associated domains (TADs) encompassing known syndromic loci. Remarkably, BCA breakpoints in eight subjects altered a single TAD encompassing MEF2C, a known driver of 5q14.3 microdeletion syndrome, resulting in decreased MEF2C expression. This study proposes that sequence-level resolution dramatically improves prediction of clinical outcomes for balanced rearrangements, and provides insight into novel pathogenic mechanisms such as altered regulation due to changes in chromosome topology.
Despite a high heritability, a genetic diagnosis can only be established in a minority of patients with autism spectrum disorder (ASD), characterized by persistent deficits in social communication and interaction and restricted, repetitive patterns of behavior, interests or activities1. Known genetic causes include chromosomal aberrations, such as the duplication of the 15q11-13 region, and monogenic causes, such as the Rett and Fragile X syndromes. The genetic heterogeneity within ASD is striking, with even the most frequent causes responsible for only 1% of cases at the most. Even with the recent developments in next generation sequencing, for the large majority of cases no molecular diagnosis can be established 2-7. Here, we report 10 patients with ASD and other shared clinical characteristics, including intellectual disability and facial dysmorphisms caused by a mutation in ADNP, a transcription factor involved in the SWI/SNF remodeling complex. We estimate this gene to be mutated in at least 0.17% of ASD cases, making it one of the most frequent ASD genes known to date.
The nuclear lamina provides structural support to the nucleus and has a central role in nuclear organization and gene regulation. Defects in its constituents, the lamins, lead to a class of genetic diseases collectively referred to as laminopathies. Using live cell imaging, we observed the occurrence of intermittent, non-lethal ruptures of the nuclear envelope in dermal fibroblast cultures of patients with different mutations of lamin A/C. These ruptures, which were absent in normal fibroblasts, could be mimicked by selective knockdown as well as knockout of LMNA and were accompanied by the loss of cellular compartmentalization. This was demonstrated by the influx of cytoplasmic transcription factor RelA and regulatory protein Cyclin B1 into the nucleus, and efflux of nuclear transcription factor OCT1 and nuclear structures containing the promyelocytic leukemia (PML) tumour suppressor protein to the cytoplasm. While recovery of enhanced yellow fluorescent protein-tagged nuclear localization signal in the nucleus demonstrated restoration of nuclear membrane integrity, part of the mobile PML structures became permanently translocated to the cytoplasm. These satellite PML structures were devoid of the typical PML body components, such as DAXX, SP100 or SUMO1. Our data suggest that nuclear rupture and loss of compartmentalization may add to cellular dysfunction and disease development in various laminopathies.
The advent of massive parallel sequencing is rapidly changing the strategies employed for the genetic diagnosis and research of rare diseases that involve a large number of genes. So far it is not clear whether these approaches perform significantly better than conventional single gene testing as requested by clinicians. The current yield of this traditional diagnostic approach depends on a complex of factors that include gene-specific phenotype traits, and the relative frequency of the involvement of specific genes. To gauge the impact of the paradigm shift that is occurring in molecular diagnostics, we assessed traditional Sanger-based sequencing (in 2011) and exome sequencing followed by targeted bioinformatics analysis (in 2012) for five different conditions that are highly heterogeneous, and for which our center provides molecular diagnosis. We find that exome sequencing has a much higher diagnostic yield than Sanger sequencing for deafness, blindness, mitochondrial disease, and movement disorders. For microsatellite-stable colorectal cancer, this was low under both strategies. Even if all genes that could have been ordered by physicians had been tested, the larger number of genes captured by the exome would still have led to a clearly superior diagnostic yield at a fraction of the cost.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.