Gene-disruptive mutations contribute to the biology of neurodevelopmental disorders (NDDs), but most pathogenic genes are not known. We sequenced 208 candidate genes from >11,730 patients and >2,867 controls. We report 91 genes with an excess of de novo mutations or private disruptive mutations in 5.7% of patients, including 38 novel NDD genes. Drosophila functional assays of a subset bolster their involvement in NDDs. We identify 25 genes that show a bias for autism versus intellectual disability and highlight a network associated with high-functioning autism (FSIQ>100). Clinical follow-up for NAA15, KMT5B, and ASH1L reveals novel syndromic and non-syndromic forms of disease.
Despite a high heritability, a genetic diagnosis can only be established in a minority of patients with autism spectrum disorder (ASD), characterized by persistent deficits in social communication and interaction and restricted, repetitive patterns of behavior, interests or activities1. Known genetic causes include chromosomal aberrations, such as the duplication of the 15q11-13 region, and monogenic causes, such as the Rett and Fragile X syndromes. The genetic heterogeneity within ASD is striking, with even the most frequent causes responsible for only 1% of cases at the most. Even with the recent developments in next generation sequencing, for the large majority of cases no molecular diagnosis can be established 2-7. Here, we report 10 patients with ASD and other shared clinical characteristics, including intellectual disability and facial dysmorphisms caused by a mutation in ADNP, a transcription factor involved in the SWI/SNF remodeling complex. We estimate this gene to be mutated in at least 0.17% of ASD cases, making it one of the most frequent ASD genes known to date.
Intellectual disability (ID) affects approximately 1%-3% of humans with a gender bias toward males. Previous studies have identified mutations in more than 100 genes on the X chromosome in males with ID, but there is less evidence for de novo mutations on the X chromosome causing ID in females. In this study we present 35 unique deleterious de novo mutations in DDX3X identified by whole exome sequencing in 38 females with ID and various other features including hypotonia, movement disorders, behavior problems, corpus callosum hypoplasia, and epilepsy. Based on our findings, mutations in DDX3X are one of the more common causes of ID, accounting for 1%-3% of unexplained ID in females. Although no de novo DDX3X mutations were identified in males, we present three families with segregating missense mutations in DDX3X, suggestive of an X-linked recessive inheritance pattern. In these families, all males with the DDX3X variant had ID, whereas carrier females were unaffected. To explore the pathogenic mechanisms accounting for the differences in disease transmission and phenotype between affected females and affected males with DDX3X missense variants, we used canonical Wnt defects in zebrafish as a surrogate measure of DDX3X function in vivo. We demonstrate a consistent loss-of-function effect of all tested de novo mutations on the Wnt pathway, and we further show a differential effect by gender. The differential activity possibly reflects a dose-dependent effect of DDX3X expression in the context of functional mosaic females versus one-copy males, which reflects the complex biological nature of DDX3X mutations.
AnkyrinG, encoded by the ANK3 gene, is involved in neuronal development and signaling. It has previously been implicated in bipolar disorder and schizophrenia by association studies. Most recently, de novo missense mutations in this gene were identified in autistic patients. However, the causative nature of these mutations remained controversial. Here, we report inactivating mutations in the Ankyrin 3 (ANK3) gene in patients with severe cognitive deficits. In a patient with a borderline intelligence, severe attention deficit hyperactivity disorder (ADHD), autism and sleeping problems, all isoforms of the ANK3 gene, were disrupted by a balanced translocation. Furthermore, in a consanguineous family with moderate intellectual disability (ID), an ADHD-like phenotype and behavioral problems, we identified a homozygous truncating frameshift mutation in the longest isoform of the same gene, which represents the first reported familial mutation in the ANK3 gene. The causality of ANK3 mutations in the two families and the role of the gene in cognitive function were supported by memory defects in a Drosophila knockdown model. Thus we demonstrated that ANK3 plays a role in intellectual functioning. In addition, our findings support the suggested association of ANK3 with various neuropsychiatric disorders and illustrate the genetic and molecular relation between a wide range of neurodevelopmental disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.