Explainable AI consists in developing mechanisms allowing for an interaction between decision systems and humans by making the decisions of the formers understandable. This is particularly important in sensitive contexts like in the medical domain. We propose a use case study, for skin lesion diagnosis, illustrating how it is possible to provide the practitioner with explanations on the decisions of a state of the art deep neural network classifier trained to characterize skin lesions from examples. Our framework consists of a trained classifier onto which an explanation module operates. The latter is able to offer the practitioner exemplars and counterexemplars for the classification diagnosis thus allowing the physician to interact with the automatic diagnosis system. The exemplars are generated via an adversarial autoencoder. We illustrate the behavior of the system on representative examples.
We propose a multiple-komi modification of the AlphaGo Zero/Leela Zero paradigm. The winrate as a function of the komi is modeled with a two-parameters sigmoid function, hence the winrate for all komi values is obtained, at the price of predicting just one more variable. A second novel feature is that training is based on self-play games that occasionaly branch -with changed komi-when the position is uneven. With this setting, reinforcement learning is shown to work on 7×7 Go, obtaining very strong playing agents. As a useful byproduct, the sigmoid parameters given by the network allow to estimate the score difference on the board, and to evaluate how much the game is decided. Finally, we introduce a family of agents which target winning moves with a higher score difference.
A key issue in critical contexts such as medical diagnosis is the interpretability of the deep learning models adopted in decision-making systems. Research in eXplainable Artificial Intelligence (XAI) is trying to solve this issue. However, often XAI approaches are only tested on generalist classifier and do not represent realistic problems such as those of medical diagnosis. In this paper, we aim at improving the trust and confidence of users towards automatic AI decision systems in the field of medical skin lesion diagnosis by customizing an existing XAI approach for explaining an AI model able to recognize different types of skin lesions. The explanation is generated through the use of synthetic exemplar and counter-exemplar images of skin lesions and our contribution offers the practitioner a way to highlight the crucial traits responsible for the classification decision. A validation survey with domain experts, beginners, and unskilled people shows that the use of explanations improves trust and confidence in the automatic decision system. Also, an analysis of the latent space adopted by the explainer unveils that some of the most frequent skin lesion classes are distinctly separated. This phenomenon may stem from the intrinsic characteristics of each class and may help resolve common misclassifications made by human experts.
A key issue in critical contexts such as medical diagnosis is the interpretability of the deep learning models adopted in decision-making systems. Research in eXplainable Artificial Intelligence (XAI) is trying to solve this issue. However, often XAI approaches are only tested on generalist classifier and do not represent realistic problems such as those of medical diagnosis. In this paper, we analyze a case study on skin lesion images where we customize an existing XAI approach for explaining a deep learning model able to recognize different types of skin lesions. The explanation is formed by synthetic exemplar and counter-exemplar images of skin lesion and offers the practitioner a way to highlight the crucial traits responsible for the classification decision. A survey conducted with domain experts, beginners and unskilled people proof that the usage of explanations increases the trust and confidence in the automatic decision system. Also, an analysis of the latent space adopted by the explainer unveils that some of the most frequent skin lesion classes are distinctly separated. This phenomenon could derive from the intrinsic characteristics of each class and, hopefully, can provide support in the resolution of the most frequent misclassifications by human experts.
Explainable AI consists in developing models allowing interaction between decision systems and humans by making the decisions understandable. We propose a case study for skin lesion diagnosis showing how it is possible to provide explanations of the decisions of deep neural network trained to label skin lesions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.