The present study investigated the effect of nociceptin (NC), the endogenous ligand of the opioid-like orphan receptor ORL1, on ethanol intake in genetically selected Marchigian Sardinian alcohol-preferring (msP) rats. Acute intracerebroventricular (i.c.v.) injection of 250 or 500 ng/rat of NC, just before access to 10% ethanol (offered 2 h/day), significantly increased ethanol intake. Subchronic (7 days) i.c.v. injection of 500 ng/rat of NC, given just before access to 10% ethanol (for 30 min/day), resulted in a progressive decrease in ethanol consumption. After the end of NC treatment, rats progressively recovered their usual ethanol intake. When NC, 500 or 1000 ng/rat, was tested versus the effect of ethanol in the place conditioning paradigm, NC significantly reduced the increase in time spent in the ethanol-paired compartment after conditioning. This finding suggests that NC reduces the rewarding properties of ethanol in msP rats; thus, they may respond to the acute NC administration by increasing their ethanol intake in an attempt to achieve the usual reinforcing effect of ethanol, whereas subchronic NC treatment may result in extinction of ethanol drinking. The results of the present study suggest that the brain NC mechanisms may represent an interesting target of pharmacological interventions for the treatment of alcoholism.
Pharmacological results suggest that this model, in addition to face validity as an isomorphic model of human binge eating, is endowed with good predictive validity.
The introduction of tacrolimus in clinical practice has improved patient survival after organ transplant. However, despite the long use of tacrolimus in clinical practice, the best way to use this agent is still a matter of intense debate. The start of the genomic era has generated new research areas, such as pharmacogenetics, which studies the variability of drug response in relation to the genetic factors involved in the processes responsible for the pharmacokinetics and/or the action mechanism of a drug in the body. This variability seems to be correlated with the presence of genetic polymorphisms. Genotyping is an attractive option especially for the initiation of the dosing of tacrolimus; also, unlike phenotypic tests, the genotype is a stable characteristic that needs to be determined only once for any given gene. However, prospective clinical studies must show that genotype determination before transplantation allows for better use of a given drug and improves the safety and clinical efficacy of that medication. At present, research has been able to reliably show that the CYP3A5 genotype, but not the CYP3A4 or ABCB1 ones, can modify the pharmacokinetics of tacrolimus. However, it has not been possible to incontrovertibly show that the corresponding changes in the pharmacokinetic profile are linked with different patient outcomes regarding tacrolimus efficacy and toxicity. For these reasons, pharmacogenetics and individualized medicine remain a fascinating area for further study and may ultimately become the face of future medical practice and drug dosing.
Evidence suggests that obesity adversely affects brain function. High body mass index, hypertension, dyslipidemia, insulin resistance, and diabetes are risk factors for increasing cognitive decline. Tart cherries (Prunus Cerasus L.) are rich in anthocyanins and components that modify lipid metabolism. This study evaluated the effects of tart cherries on the brain in diet-induced obese (DIO) rats. DIO rats were fed with a high-fat diet alone or in association with a tart cherry seeds powder (DS) and juice (DJS). DIO rats were compared to rats fed with a standard diet (CHOW). Food intake, body weight, fasting glycemia, insulin, cholesterol, and triglycerides were measured. Immunochemical and immunohistochemical techniques were performed. Results showed that body weight did not differ among the groups. Blood pressure and glycemia were decreased in both DS and DJS groups when compared to DIO rats. Immunochemical and immunohistochemical techniques demonstrated that in supplemented DIO rats, the glial fibrillary acid protein expression and microglial activation were reduced in both the hippocampus and in the frontal cortex, while the neurofilament was increased. Tart cherry intake modified aquaporin 4 and endothelial inflammatory markers. These findings indicate the potential role of this nutritional supplement in preventing obesity-related risk factors, especially neuroinflammation.
The Transient Receptor Potential (TRP) superfamily consists of cation-selective and non-selective ion channels playing an important role both in sensory physiology and in physiopathology in several complex diseases including cancers. Among TRP family, the mucolipin (TRPML1, −2, and −3) channels represent a distinct subfamily of endosome/lysosome Ca2+ channel proteins. Loss-of-function mutations in human TRPML-1 gene cause a neurodegenerative disease, Mucolipidosis Type IV, whereas at present no pathology has been associated to human TRPML-2 channels.Herein we found that human TRPML-2 is expressed both in normal astrocytes and neural stem/progenitor cells. By quantitative RT-PCR, western blot, cytofluorimetric and immunohistochemistry analysis we also demonstrated that TRPML-2 mRNA and protein are expressed at different levels in glioma tissues and high-grade glioma cell lines of astrocytic origin. TRPML-2 mRNA and protein levels increased with the pathological grade, starting from pylocitic astrocytoma (grade I) to glioblastoma (grade IV). Moreover, by RNA interference, we demonstrated a role played by TRPML-2 in survival and proliferation of glioma cell lines. In fact, knock-down of TRPML-2 inhibited the viability, altered the cell cycle, reduced the proliferation and induced apoptotic cell death in glioma cell lines. The DNA damage and apoptosis induced by TRPML-2 loss increased Ser139 H2AX phosphorylation and induced caspase-3 activation; furthermore, knock-down of TRPML-2 in T98 and U251 glioma cell lines completely abrogated Akt and Erk1/2 phosphorylation, as compared to untreated cells.Overall, the high TRPML-2 expression in glioma cells resulted in increased survival and proliferation signaling, suggesting a pro-tumorigenic role played by TRPML-2 in glioma progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.