Exosomes are nanovesicles released by normal and tumor cells, which are detectable in cell culture supernatant and human biological fluids, such as plasma. Functions of exosomes released by “normal” cells are not well understood. In fact, several studies have been carried out on exosomes derived from hematopoietic cells, but very little is known about NK cell exosomes, despite the importance of these cells in innate and adaptive immunity. In this paper, we report that resting and activated NK cells, freshly isolated from blood of healthy donors, release exosomes expressing typical protein markers of NK cells and containing killer proteins (i.e., Fas ligand and perforin molecules). These nanovesicles display cytotoxic activity against several tumor cell lines and activated, but not resting, immune cells. We also show that NK-derived exosomes undergo uptake by tumor target cells but not by resting PBMC. Exosomes purified from plasma of healthy donors express NK cell markers, including CD56+ and perforin, and exert cytotoxic activity against different human tumor target cells and activated immune cells as well. The results of this study propose an important role of NK cell-derived exosomes in immune surveillance and homeostasis. Moreover, this study supports the use of exosomes as an almost perfect example of biomimetic nanovesicles possibly useful in future therapeutic approaches against various diseases, including tumors.
Recent characterization of abnormal phosphatidylcholine metabolism in tumor cells by nuclear magnetic resonance (NMR) has identified novel fingerprints of tumor progression that are potentially useful as clinical diagnostic indicators. In the present study, we analyzed the concentrations of phosphatidylcholine metabolites, activities of phosphocholineproducing enzymes, and uptake of [methyl-14 C]choline in human epithelial ovarian carcinoma cell lines (EOC) compared with normal or immortalized ovary epithelial cells (EONT). Quantification of phosphatidylcholine metabolites contributing to the 1 H NMR total choline resonance (3.20-3.24 ppm) revealed intracellular [phosphocholine] and [total choline] of 2.3 F 0.9 and 5.2 F 2.4 nmol/10 6 cells, respectively, with a glycerophosphocholine/phosphocholine ratio of 0.95 F 0.93 in EONT cells; average [phosphocholine] was 3-to 8-fold higher in EOC cells (P < 0.0001), becoming the predominant phosphatidylcholine metabolite, whereas average glycerophosphocholine/phosphocholine values decreased significantly to V0.2. Two-dimensional {phosphocholine/total choline, [total choline]} and {glycerophosphocholine/total choline, [total choline]} maps allowed separate clustering of EOC from EONT cells (P < 0.0001, 95% confidence limits). Rates of choline kinase activity in EOC cells were 12-to 24-fold higher (P < 0.03) than those in EONT cells (basal rate, 0.5 F 0.1 nmol/10 6 cells/h), accounting for a consistently elevated (5-to 15-fold) [methyl-14 C]-choline uptake after 1-hour incubation (P < 0.0001). The overall activity of phosphatidylcholine-specific phospholipase C and phospholipase D was also higher (f5-fold) in EOC cells, suggesting that both biosynthetic and catabolic pathways of the phosphatidylcholine cycle likely contribute to phosphocholine accumulation. Evidence of abnormal phosphatidylcholine metabolism might have implications in EOC biology and might provide an avenue to the development of noninvasive clinical tools for EOC diagnosis and treatment follow-up. (Cancer Res 2005; 65(20): 9369-76)
Purpose: Immunotherapy is a promising antitumor strategy, which can be successfully combined with current anticancer treatments, as suggested by recent studies showing the paradoxical chemotherapy-induced enhancement of the immune response. The purpose of the present work is to dissect the biological events induced by chemotherapy that cooperate with immunotherapy in the success of the combined treatment against cancer. In particular, we focused on the following: (a) cyclophosphamide-induced modulation of several cytokines, (b) homeostatic proliferation of adoptively transferred lymphocytes, and (c) homing of transferred lymphocytes to secondary lymphoid organs and tumor mass. Experimental Design: Here, we used the adoptive transfer of tumor-immune cells after cyclophosphamide treatment of tumor-bearing mice as a model to elucidate the mechanisms by which cyclophosphamide can render the immune lymphocytes competent to induce tumor rejection. Results: The transfer of antitumor immunity was found to be dependent on CD4 + Tcells and on the cooperation of adoptively transferred cells with the host immune system. Of note, tumorimmune lymphocytes migrated specifically to the tumor only in mice pretreated with cyclophosphamide. Cyclophosphamide treatment also promoted homeostatic proliferation/activation of transferred B and T lymphocytes. Optimal therapeutic responses to the transfer of immune cells were associated with the cyclophosphamide-mediated induction of a ''cytokine storm'' [including granulocyte macrophage colony-stimulating factor, interleukin (IL)-1h, IL-7, IL-15, IL-2, IL-21, and IFN-g], occurring during the ''rebound phase''after drug-induced lymphodepletion. Conclusions: The ensemble of these data provides a new rationale for combining immunotherapy and chemotherapy to induce an effective antitumor response in cancer patients.
In this study we examined the effects of target membrane cholesterol depletion and cytoskeletal changes on human immunodeficiency virus type 1 (HIV-1) Env-mediated membrane fusion by dye redistribution assays. We found that treatment of peripheral blood lymphocytes (PBL) with methyl--cyclodextrin (MCD) or cytochalasin reduced their susceptibility to membrane fusion with cells expressing HIV-1 Env that utilize CXCR4 or CCR5. However, treatment of human osteosarcoma (HOS) cells expressing high levels of CD4 and coreceptors with these agents did not affect their susceptibility to HIV-1 Env-mediated membrane fusion. Removal of cholesterol inhibited stromal cell-derived factor-1␣-and macrophage inflammatory protein 1-induced chemotaxis of both PBL and HOS cells expressing CD4 and coreceptors. The fusion activity as well as the chemotactic activity of PBL was recovered by adding back cholesterol to these cells. Confocal laser scanning microscopy analysis indicated that treatment of lymphocytes with MCD reduced the colocalization of CD4 or of CXCR4 with actin presumably in microvilli. These findings indicate that, although cholesterol is not required for HIV-1 Env-mediated membrane fusion per se, its depletion from cells with relatively low coreceptor densities reduces the capacity of HIV-1 Env to engage coreceptor clusters required to trigger fusion. Furthermore, our results suggest that coreceptor clustering may occur in microvilli that are supported by actin polymerization.
We investigated the effect of interleukin (IL)-2, a T cell growth factor capable of activating certain macrophage functions, on interferon (IFN)-gamma expression in resting mouse peritoneal macrophages (PM). IL-2 addition to PM from different mouse strains up-modulated IFN-gamma mRNA and protein secretion. It is notable that endogenous type I and II IFNs did not play any role in the IL-2-mediated effect, as comparable levels of secreted IFN-gamma were observed upon IL-2 stimulation of PM from deficient mice. In contrast, endogenous IFN-gamma was requested for the IL-12-induced IFN-gamma production. It is interesting that blocking of each component of the IL-2 receptor (IL-2R) by neutralizing antibodies almost completely abolished IL-2-induced IFN-gamma production, suggesting that all IL-2R chains contribute to the PM biological response to IL-2. The simultaneous treatment of PM with IL-2 and IL-12 resulted in a higher IFN-gamma secretion with respect to that obtained upon treatment with IL-2 or IL-12 alone. It is notable that IFN-gamma protein was expressed intracellularly in the majority of cells exhibiting a macrophage phenotype (i.e., F4/80+) and was secreted upon IL-2 stimulation. Overall, these findings demonstrate that IL-2 regulates at different levels IFN-gamma expression in macrophages, highlighting the crucial role of these cells and their regulated responsiveness to key cytokines in the cross-talk between innate and adaptive immunity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.