Lataro RM, Silva CA, Fazan R Jr, Rossi MA, Prado CM, Godinho RO, Salgado HC. Increase in parasympathetic tone by pyridostigmine prevents ventricular dysfunction during the onset of heart failure. Am J Physiol Regul Integr Comp Physiol 305: R908 -R916, 2013. First published August 28, 2013 doi:10.1152/ajpregu.00102.2013.-Heart failure (HF) is characterized by elevated sympathetic activity and reduced parasympathetic control of the heart. Experimental evidence suggests that the increase in parasympathetic function can be a therapeutic alternative to slow HF evolution. The parasympathetic neurotransmission can be improved by acetylcholinesterase inhibition. We investigated the long-term (4 wk) effects of the acetylcholinesterase inhibitor pyridostigmine on sympathovagal balance, cardiac remodeling, and cardiac function in the onset of HF following myocardial infarction. Myocardial infarction was elicited in adult male Wistar rats. After 4 wk of pyridostigmine administration, per os, methylatropine and propranolol were used to evaluate the cardiac sympathovagal balance. The tachycardic response caused by methylatropine was considered to be the vagal tone, whereas the bradycardic response caused by propranolol was considered to be the sympathetic tone. In conscious HF rats, pyridostigmine reduced the basal heart rate, increased vagal, and reduced sympathetic control of heart rate. Pyridostigmine reduced the myocyte diameter and collagen density of the surviving left ventricle. Pyridostigmine also increased vascular endothelial growth factor protein in the left ventricle, suggesting myocardial angiogenesis. Cardiac function was assessed by means of the pressure-volume conductance catheter system. HF rats treated with pyridostigmine exhibited a higher stroke volume, ejection fraction, cardiac output, and contractility of the left ventricle. It was demonstrated that the long-term administration of pyridostigmine started right after coronary artery ligation augmented cardiac vagal and reduced sympathetic tone, attenuating cardiac remodeling and left ventricular dysfunction during the progression of HF in rats.
The renin-angiotensin system (RAS) plays a key role in the control of vasoconstriction as well as sodium and fluid retention mediated mainly by angiotensin (Ang) II acting at the AT1 receptor (AT1R). Ang-(1-7) is another RAS peptide, identified as the endogenous ligand of the Mas receptor and known to counterbalance many of the deleterious effects of AngII. AT1R signaling triggered by β-arrestin-biased agonists has been associated to cardioprotection. Because position 8 in AngII is important for G protein activation, we hypothesized that Ang-(1-7) could be an endogenous β-arrestin-biased agonist of the AT1R. Here we show that Ang-(1-7) binds to the AT1R without activating Gq, but triggering β-arrestins 1 and 2 recruitment and activation. Using an in vivo model of cardiac hypertrophy, we show that Ang-(1-7) significantly attenuates heart hypertrophy by reducing both heart weight and ventricular wall thickness and the increased end-diastolic pressure. Whereas neither the single blockade of AT1 or Mas receptors with their respective antagonists prevented the cardioprotective action of Ang1-7, combination of the two antagonists partially impaired the effect of Ang-(1-7). Taken together, these data indicate that Ang-(1-7) mediates at least part of its cardioprotective effects by acting as an endogenous β-arrestin-biased agonist at the AT1R.
1 The in¯uence of endothelin receptor antagonists on febrile responses to E. coli lipopolysaccharide (LPS), interleukin-1b (IL-1b), tumour necrosis factor-a (TNF-a) and endothelin-1 (ET-1) was assessed in conscious rats. 2 Intravenous (i.v.) LPS (5.0 mg kg 71 ) markedly increased rectal temperature to a peak of 1.308C over baseline at 2. 4 Central injection of endothelin-1 (0.1 to 3 fmol, i.c.v.) caused slowly-developing and long-lasting increases in rectal temperature (starting 2 h after administration and peaking at 4 ± 6 h between 0.90 and 1.158C) which were not clearly dose-dependent. The response to endothelin-1 (1 fmol, i.c.v.) was prevented by BQ-788, but not by BQ-123 (each at 3 pmol, i.c.v.). Intraperitoneal pretreatment with the cyclo-oxygenase inhibitor indomethacin (2 mg kg 71 ), which partially reduced LPS-induced fever, did not modify the hyperthermic response to endothelin-1 (3 fmol, i.c.v.). 5 Therefore, central endothelin(s) participates importantly in the development of LPS-induced fever, via activation of a prostanoid-independent endothelin ET B receptor-mediated mechanism possibly not situated downstream from IL-1b or TNF-a in the fever cascade.
Scorpion envenomation is a leading cause of morbidity and mortality among accidents caused by venomous animals. Major clinical manifestations that precede death after scorpion envenomation include heart failure and pulmonary edema. Here, we demonstrate that cardiac dysfunction and fatal outcomes caused by lethal scorpion envenomation in mice are mediated by a neuro-immune interaction linking IL-1 receptor signaling, prostaglandin E2, and acetylcholine release. IL-1R deficiency, the treatment with a high dose of dexamethasone or blockage of parasympathetic signaling using atropine or vagotomy, abolished heart failure and mortality of envenomed mice. Therefore, we propose the use of dexamethasone administration very early after envenomation, even before antiserum, to inhibit the production of inflammatory mediators and acetylcholine release, and to reduce the risk of death.
Donepezil attenuated the development of hypertension in SHR probably involving antiinflammatory effects, indicating that acetylcholinesterase inhibition yields benefic effects for antihypertensive therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.