In an era of rapid climate change, there is a pressing need to understand how organisms will cope with faster and less predictable variation in environmental conditions. Here we develop a unifying model that predicts evolutionary responses to environmentally driven fluctuating selection and use this theoretical framework to explore the potential consequences of altered environmental cycles. We first show that the parameter space determined by different combinations of predictability and timescale of environmental variation is partitioned into distinct regions where a single mode of response (reversible phenotypic plasticity, irreversible phenotypic plasticity, bet-hedging, or adaptive tracking) has a clear selective advantage over all others. We then demonstrate that, although significant environmental changes within these regions can be accommodated by evolution, most changes that involve transitions between regions result in rapid population collapse and often extinction. Thus, the boundaries between response mode regions in our model correspond to evolutionary tipping points, where even minor changes in environmental parameters can have dramatic and disproportionate consequences on population viability. Finally, we discuss how different life histories and genetic architectures may influence the location of tipping points in parameter space and the likelihood of extinction during such transitions. These insights can help identify and address some of the cryptic threats to natural populations that are likely to result from any natural or human-induced change in environmental conditions. They also demonstrate the potential value of evolutionary thinking in the study of global climate change.fluctuating selection | global change | phenotypic plasticity | bet-hedging | adaptive tracking
From the foods we eat and the houses we construct, to our religious practices and political organization, to who we can marry and the types of games we teach our children, the diversity of cultural practices in the world is astounding. Yet, our ability to visualize and understand this diversity is limited by the ways it has been documented and shared: on a culture-by-culture basis, in locally-told stories or difficult-to-access repositories. In this paper we introduce D-PLACE, the Database of Places, Language, Culture, and Environment. This expandable and open-access database (accessible at https://d-place.org) brings together a dispersed corpus of information on the geography, language, culture, and environment of over 1400 human societies. We aim to enable researchers to investigate the extent to which patterns in cultural diversity are shaped by different forces, including shared history, demographics, migration/diffusion, cultural innovations, and environmental and ecological conditions. We detail how D-PLACE helps to overcome four common barriers to understanding these forces: i) location of relevant cultural data, (ii) linking data from distinct sources using diverse ethnonyms, (iii) variable time and place foci for data, and (iv) spatial and historical dependencies among cultural groups that present challenges for analysis. D-PLACE facilitates the visualisation of relationships among cultural groups and between people and their environments, with results downloadable as tables, on a map, or on a linguistic tree. We also describe how D-PLACE can be used for exploratory, predictive, and evolutionary analyses of cultural diversity by a range of users, from members of the worldwide public interested in contrasting their own cultural practices with those of other societies, to researchers using large-scale computational phylogenetic analyses to study cultural evolution. In summary, we hope that D-PLACE will enable new lines of investigation into the major drivers of cultural change and global patterns of cultural diversity.
Sexual selection is proposed to be an important driver of diversification in animal systems, yet previous tests of this hypothesis have produced mixed results and the mechanisms involved remain unclear. Here, we use a novel phylogenetic approach to assess the influence of sexual selection on patterns of evolutionary change during 84 recent speciation events across 23 passerine bird families. We show that elevated levels of sexual selection are associated with more rapid phenotypic divergence between related lineages, and that this effect is restricted to male plumage traits proposed to function in mate choice and species recognition. Conversely, we found no evidence that sexual selection promoted divergence in female plumage traits, or in male traits related to foraging and locomotion. These results provide strong evidence that female choice and male–male competition are dominant mechanisms driving divergence during speciation in birds, potentially linking sexual selection to the accelerated evolution of pre-mating reproductive isolation.
Animals living in harsh environments, where temperatures are hot and rainfall is unpredictable, are more likely to breed in cooperative groups. As a result, harsh environmental conditions have been accepted as a key factor explaining the evolution of cooperation. However, this is based on evidence that has not investigated the order of evolutionary events, so the inferred causality could be incorrect. We resolved this problem using phylogenetic analyses of 4,707 bird species and found that causation was in the opposite direction to that previously assumed. Rather than harsh environments favouring cooperation, cooperative breeding has facilitated the colonization of harsh environments. Cooperative breeding was, in fact, more likely to evolve from ancestors occupying relatively cool environmental niches with predictable rainfall, which had low levels of polyandry and hence high within-group relatedness. We also found that polyandry increased after cooperative breeders invaded harsh environments, suggesting that when helpers have limited options to breed independently, polyandry no longer destabilizes cooperation. This provides an explanation for the puzzling cases of polyandrous cooperative breeding birds. More generally, this illustrates how cooperation can play a key role in invading ecological niches, a pattern observed across all levels of biological organization from cells to animal societies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.