In an era of rapid climate change, there is a pressing need to understand how organisms will cope with faster and less predictable variation in environmental conditions. Here we develop a unifying model that predicts evolutionary responses to environmentally driven fluctuating selection and use this theoretical framework to explore the potential consequences of altered environmental cycles. We first show that the parameter space determined by different combinations of predictability and timescale of environmental variation is partitioned into distinct regions where a single mode of response (reversible phenotypic plasticity, irreversible phenotypic plasticity, bet-hedging, or adaptive tracking) has a clear selective advantage over all others. We then demonstrate that, although significant environmental changes within these regions can be accommodated by evolution, most changes that involve transitions between regions result in rapid population collapse and often extinction. Thus, the boundaries between response mode regions in our model correspond to evolutionary tipping points, where even minor changes in environmental parameters can have dramatic and disproportionate consequences on population viability. Finally, we discuss how different life histories and genetic architectures may influence the location of tipping points in parameter space and the likelihood of extinction during such transitions. These insights can help identify and address some of the cryptic threats to natural populations that are likely to result from any natural or human-induced change in environmental conditions. They also demonstrate the potential value of evolutionary thinking in the study of global climate change.fluctuating selection | global change | phenotypic plasticity | bet-hedging | adaptive tracking
Summary Many aspects of the social environment affect hypothalamic‐pituitary‐adrenal (HPA) axis function and increase circulating glucocorticoid concentrations. In this review, we examine the relationships between the social environment and the function of the HPA axis in vertebrates. First, we explore the effects of the social environment on glucocorticoid secretion in territorial (primarily non‐social) species, with an emphasis on the effects of variation in population density, as modified by environmental factors such as predation risk and food availability. In general, high population density or frequent territorial intrusions are associated with increased glucocorticoid secretion in a wide range of taxa, including mammals, birds, fish and reptiles, although there is considerable variability across species. Second, we consider the effects of social interactions and dominance rank on glucocorticoid secretion in social species, mostly in birds and mammals. We review studies that have detected an association between social status and glucocorticoid levels – sometimes with higher glucocorticoid levels in low‐ranking individuals, and sometimes with higher glucocorticoid levels in dominant individuals. The relationship between dominance and glucocorticoid levels varies among species, populations and years, in a manner that depends on the stability of the social hierarchy, environmental conditions, the type of breeding system, and the manner in which high rank is obtained and maintained. Finally, we discuss the concept of allostasis and consider interactions between social effects and other environmental factors, noting that there is relatively little research on these interactions to date. For both non‐social and social species, we identify priorities of future research. These priorities include more complete descriptions of HPA function that move beyond measurements of basal glucocorticoid concentrations (which will generally require field experiments), to studies that examine organizational effects of social stressors, that directly test the relationship between HPA function and fitness, and that examine how glucocorticoid responses affect population dynamics. Although several lines of evidence suggest that glucocorticoid responses can affect the fitness of individuals and therefore can alter the dynamics of populations, the effect of glucocorticoid responses on population dynamics remains essentially unstudied.
Understanding why organisms as different as amoebas, ants, and birds cooperate remains an important question in evolutionary biology. Although ecology can influence cooperation and conflict within animal societies and has been implicated in species differences in sociality, the environmental predictors of sociality across broad geographic and taxonomic scales remain poorly understood. In particular, the importance of temporal variation in selection pressure has been underestimated in most evolutionary studies. Environmental uncertainty resulting from climatic variation is likely to be an important driver of temporal variation in selection pressure and therefore is expected to impact the evolution of behavioral, morphological, and physiological traits, including cooperation. Using a data set of over 95% of the world's birds, we examine the global geography and environmental, biotic, and historical biogeographic predictors of avian social behavior. We find dramatic spatial variation in social behavior for which environmental and biotic factors--namely, among-year environmental variability in precipitation--are important predictors. Although the clear global biogeographic structure in avian social behavior carries a strong signal of evolutionary history, environmental uncertainty plays an additional key role in explaining the incidence and distribution of avian cooperative breeding behavior.
Many vertebrates breed in cooperative groups in which more than two members provide care for young. Studies of cooperative breeding behavior within species have long highlighted the importance of environmental factors in mediating the paradox of why some such individuals delay independent breeding to help raise the offspring of others. In contrast, studies involving comparisons among species have not shown a similarly clear evolutionary-scale relationship between the interspecific incidence of cooperative breeding and any environmental factors. Here, we use a phylogenetically controlled comparative analysis of a complete, socially diverse group of birds-45 species of African starlings-to show that cooperative breeding is positively associated with living in semiarid savanna habitats and with temporal variability in rainfall. Savanna habitats are not only highly seasonal, but also temporally variable and unpredictable, and this temporal variability directly influences individual reproductive decisions in starlings and helps explain interspecific patterns of sociality. Cooperative breeding is likely to be adaptive in temporally variable environments because it allows for both reproduction in harsh years and sustained breeding during benign years. This "temporal variability" hypothesis might help explain the phylogenetic and geographic concentrations of cooperatively breeding vertebrates in savanna-like habitats and other temporally variable environments worldwide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.