Web-based learning environments are becoming increasingly popular in higher education. One of the most important web learning resources is the virtual laboratory (VL), which gives students an easy way for training and learning through the Internet. Moreover, on-line collaborative communication represents a practical method to transmit the knowledge and experience from the teacher to students overcoming physical distance and isolation. Considering these facts, the authors of this document have developed a new dynamic collaborative e-learning system which combines the main advantages of virtual laboratories and collaborative learning practices. In this system, the virtual laboratories are based on Java applets which have embedded simulations developed in Easy Java Simulations (EJS), an open-source tool for teachers who do not need complex programming skills. The collaborative e-learning is based on a real-time synchronized communication among these Java applets. Therefore, this original approach provides a new tool which integrates virtual laboratories inside a synchronous collaborative e-learning framework. This paper describes the main features of this system and its successful application in a distance education environment among different universities from Spain.
Tactile sensors play an important role in robotics manipulation to perform dexterous and complex tasks. This paper presents a novel control framework to perform dexterous manipulation with multi-fingered robotic hands using feedback data from tactile and visual sensors. This control framework permits the definition of new visual controllers which allow the path tracking of the object motion taking into account both the dynamics model of the robot hand and the grasping force of the fingertips under a hybrid control scheme. In addition, the proposed general method employs optimal control to obtain the desired behaviour in the joint space of the fingers based on an indicated cost function which determines how the control effort is distributed over the joints of the robotic hand. Finally, authors show experimental verifications on a real robotic manipulation system for some of the controllers derived from the control framework.
The current trend in the evolution of sensor systems seeks ways to provide more accuracy and resolution, while at the same time decreasing the size and power consumption. The use of Field Programmable Gate Arrays (FPGAs) provides specific reprogrammable hardware technology that can be properly exploited to obtain a reconfigurable sensor system. This adaptation capability enables the implementation of complex applications using the partial reconfigurability at a very low-power consumption. For highly demanding tasks FPGAs have been favored due to the high efficiency provided by their architectural flexibility (parallelism, on-chip memory, etc.), reconfigurability and superb performance in the development of algorithms. FPGAs have improved the performance of sensor systems and have triggered a clear increase in their use in new fields of application. A new generation of smarter, reconfigurable and lower power consumption sensors is being developed in Spain based on FPGAs. In this paper, a review of these developments is presented, describing as well the FPGA technologies employed by the different research groups and providing an overview of future research within this field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.