The precise localization of human operators in robotic workplaces is an important requirement to be satisfied in order to develop human-robot interaction tasks. Human tracking provides not only safety for human operators, but also context information for intelligent human-robot collaboration. This paper evaluates an inertial motion capture system which registers full-body movements of an user in a robotic manipulator workplace. However, the presence of errors in the global translational measurements returned by this system has led to the need of using another localization system, based on Ultra-WideBand (UWB) technology. A Kalman filter fusion algorithm which combines the measurements of these systems is developed. This algorithm unifies the advantages of both technologies: high data rates from the motion capture system and global translational precision from the UWB localization system. The developed hybrid system not only tracks the movements of all limbs of the user as previous motion capture systems, but is also able to position precisely the user in the environment.
Web-based learning environments are becoming increasingly popular in higher education. One of the most important web learning resources is the virtual laboratory (VL), which gives students an easy way for training and learning through the Internet. Moreover, on-line collaborative communication represents a practical method to transmit the knowledge and experience from the teacher to students overcoming physical distance and isolation. Considering these facts, the authors of this document have developed a new dynamic collaborative e-learning system which combines the main advantages of virtual laboratories and collaborative learning practices. In this system, the virtual laboratories are based on Java applets which have embedded simulations developed in Easy Java Simulations (EJS), an open-source tool for teachers who do not need complex programming skills. The collaborative e-learning is based on a real-time synchronized communication among these Java applets. Therefore, this original approach provides a new tool which integrates virtual laboratories inside a synchronous collaborative e-learning framework. This paper describes the main features of this system and its successful application in a distance education environment among different universities from Spain.
Tactile sensors play an important role in robotics manipulation to perform dexterous and complex tasks. This paper presents a novel control framework to perform dexterous manipulation with multi-fingered robotic hands using feedback data from tactile and visual sensors. This control framework permits the definition of new visual controllers which allow the path tracking of the object motion taking into account both the dynamics model of the robot hand and the grasping force of the fingertips under a hybrid control scheme. In addition, the proposed general method employs optimal control to obtain the desired behaviour in the joint space of the fingers based on an indicated cost function which determines how the control effort is distributed over the joints of the robotic hand. Finally, authors show experimental verifications on a real robotic manipulation system for some of the controllers derived from the control framework.
Abstract-In this paper, a new approach for fusing visual and force information is shown. First, a new method for tracking trajectories, called movement flow-based visual servoing system, which presents the correct behavior in the image and in the three-dimensional space, is described. The information obtained from this system is fused with that obtained from a force control system in unstructured environments. To do so, a new method of recognizing the contact surface and a system for fusing visual and force information are described. The latter method employs variable weights for each sensor system, depending on a criteria based on the detection of changes in the interaction forces processed by a Kalman filter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.