Rapid, sensitive, and direct label-free capture and characterization of nanoparticles from complex media such as blood or serum will broadly impact medicine and the life sciences. We demonstrate identification of virus particles in complex samples for replication-competent wild-type vesicular stomatitis virus (VSV), defective VSV, and Ebola- and Marburg-pseudotyped VSV with high sensitivity and specificity. Size discrimination of the imaged nanoparticles (virions) allows differentiation between modified viruses having different genome lengths and facilitates a reduction in the counting of non-specifically bound particles to achieve a limit-of-detection (LOD) of 5×103 pfu/mL for the Ebola and Marburg VSV pseudotypes. We demonstrate the simultaneous detection of multiple viruses in a single sample (composed of serum or whole blood) for screening applications and uncompromised detection capabilities in samples contaminated with high levels of bacteria. By employing affinity-based capture, size discrimination, and a “digital” detection scheme to count single virus particles, we show that a robust and sensitive virus/nanoparticle sensing assay can been established for targets in complex samples. The nanoparticle microscopy system is termed the Single Particle Interferometric Reflectance Imaging Sensor (SP-IRIS) and is capable of high-throughput and rapid sizing of large numbers of biological nanoparticles on an antibody microarray for research and diagnostic applications.
A primary advantage of label-free detection methods over fluorescent measurements is its quantitative detection capability, since an absolute measure of adsorbed material facilitates kinetic characterization of biomolecular interactions. Interferometric techniques relate the optical phase to biomolecular layer density on the surface, but the conversion factor has not previously been accurately determined. We present a calibration method for phase shift measurements and apply it to surface-bound bovine serum albumin, immunoglobulin G, and single-stranded DNA.Biomolecules with known concentrations dissolved in salt-free water were spotted with precise volumes on the array surface and upon evaporation of the water, left a readily calculated mass. Using our label-free technique, the calculated mass of the biolayer was compared with the measured thickness, and we observed a linear dependence over 4 orders of magnitude. We determined that the widely accepted conversion of 1 nm of thickness corresponds to ~1 ng/mm 2 surface density held reasonably well for these substances and through our experiments can now be further specified for different types of biomolecules. Through accurate calibration of the dependence of thickness on surface density, we have established a relation allowing precise determination of the absolute number of molecules for single-stranded DNA and two different proteins.
Although biomarkers exist for a range of disease diagnostics, a single low-cost platform exhibiting the required sensitivity, a large dynamic-range and multiplexing capability, and zero sample preparation remains in high demand for a variety of clinical applications. The Interferometric Reflectance Imaging Sensor (IRIS) was utilized to digitally detect and size single gold nanoparticles to identify protein biomarkers in unprocessed serum and blood samples. IRIS is a simple, inexpensive, multiplexed, high-throughput, and label-free optical biosensor that was originally used to quantify biomass captured on a surface with moderate sensitivity. Here we demonstrate detection of β-lactoglobulin, a cow’s milk whey protein spiked in serum (>10 orders of magnitude) and whole blood (>5 orders of magnitude), at attomolar sensitivity. The clinical utility of IRIS was demonstrated by detecting allergen-specific IgE from microliters of characterized human serum and unprocessed whole blood samples by using secondary antibodies against human IgE labeled with 40 nm gold nanoparticles. To the best of our knowledge, this level of sensitivity over a large dynamic range has not been previously demonstrated.
IRIS offers four main advantages compared to existing technologies: it (i) detects proteins from attomolar to nanomolar concentrations in unprocessed biological samples, (ii) unambiguously discriminates nanoparticles tags on a robust and physically large sensor area, (iii) detects protein targets with conjugated very small nanoparticle tags (~40 nm diameter), which minimally affect assay kinetics compared to conventional microparticle tagging methods, and (iv) utilizes components that make the instrument inexpensive, robust, and portable. These features make IRIS an ideal candidate for clinical and diagnostic applications.
• Three-dimensional segmentation on magnetic resonance images allows the study of geometric measures. • Patients with small width of contrast enhancing areas have better prognosis. • The irregularity of contrast enhancing areas predicts survival in glioblastoma patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.