Purpose To evaluate the prognostic and predictive value of surface-derived imaging biomarkers obtained from contrast material-enhanced volumetric T1-weighted pretreatment magnetic resonance (MR) imaging sequences in patients with glioblastoma multiforme. Materials and Methods A discovery cohort from five local institutions (165 patients; mean age, 62 years ± 12 [standard deviation]; 43% women and 57% men) and an independent validation cohort (51 patients; mean age, 60 years ± 12; 39% women and 61% men) from The Cancer Imaging Archive with volumetric T1-weighted pretreatment contrast-enhanced MR imaging sequences were included in the study. Clinical variables such as age, treatment, and survival were collected. After tumor segmentation and image processing, tumor surface regularity, measuring how much the tumor surface deviates from a sphere of the same volume, was obtained. Kaplan-Meier, Cox proportional hazards, correlations, and concordance indexes were used to compare variables and patient subgroups. Results Surface regularity was a powerful predictor of survival in the discovery (P = .005, hazard ratio [HR] = 1.61) and validation groups (P = .05, HR = 1.84). Multivariate analysis selected age and surface regularity as significant variables in a combined prognostic model (P < .001, HR = 3.05). The model achieved concordance indexes of 0.76 and 0.74 for the discovery and validation cohorts, respectively. Tumor surface regularity was a predictor of survival for patients who underwent complete resection (P = .01, HR = 1.90). Tumors with irregular surfaces did not benefit from total over subtotal resections (P = .57, HR = 1.17), but those with regular surfaces did (P = .004, HR = 2.07). Conclusion The surface regularity obtained from high-resolution contrast-enhanced pretreatment volumetric T1-weighted MR images is a predictor of survival in patients with glioblastoma. It may help in classifying patients for surgery.
• Three-dimensional segmentation on magnetic resonance images allows the study of geometric measures. • Patients with small width of contrast enhancing areas have better prognosis. • The irregularity of contrast enhancing areas predicts survival in glioblastoma patients.
Objective: The main objective of this retrospective work was the study of three-dimensional (3D) heterogeneity measures of post-contrast pre-operative MR images acquired with T 1 weighted sequences of patients with glioblastoma (GBM) as predictors of clinical outcome. Methods: 79 patients from 3 hospitals were included in the study. 16 3D textural heterogeneity measures were computed including run-length matrix (RLM) features (regional heterogeneity) and co-occurrence matrix (CM) features (local heterogeneity). The significance of the results was studied using Kaplan-Meier curves and Cox proportional hazards analysis. Correlation between the variables of the study was assessed using the Spearman's correlation coefficient.Results: Kaplan-Meyer survival analysis showed that 4 of the 11 RLM features and 4 of the 5 CM features considered were robust predictors of survival. The median survival differences in the most significant cases were of over 6 months. Conclusion: Heterogeneity measures computed on the post-contrast pre-operative T 1 weighted MR images of patients with GBM are predictors of survival. Advances in knowledge: Texture analysis to assess tumour heterogeneity has been widely studied. However, most works develop a two-dimensional analysis, focusing only on one MRI slice to state tumour heterogeneity. The study of fully 3D heterogeneity textural features as predictors of clinical outcome is more robust and is not dependent on the selected slice of the tumour. INTRODUCTIONGlioblastoma (GBM) is the most frequent malignant brain tumour in adults and the most lethal type, with a median survival of 14.6 months for patients receiving the standard of care, i.e. maximal safe surgery plus radiotherapy and chemotherapy.1 Pre-operative MRI is routinely used for diagnosis, treatment planning, response evaluation and follow-up.The typical GBM appearance upon diagnosis on MRI consists of an enhanced ring with a central non-enhanced core of necrosis observed mainly on contrast-enhanced T 1 weighted images. Recently, there has been an increased use of advanced imaging techniques alone or in combination with conventional MRI modalities to characterize the connection of the so-called radio phenotype with the tumour genotype, the so-called radiogenomics (e.g. recent reviews for GBM 2,3 ). However, the use of those techniques requires further research and validation to achieve a broad clinical applicability. Thus, in clinical practice and trials, T 1 contrast-enhanced and T 2 /fluid-attenuated inversionrecovery images are still the gold standard for diagnosis and treatment planning. 4 One of the most important characteristics of GBM is its marked intratumour heterogeneity. In fact, these tumours are usually referred to as "glioblastoma multiforme", in order to highlight their heterogeneous nature. GBM tumours are formed by tumour cells which differ in their morphology, genetics and biological behaviour and may underlie the inability of conventional therapies to significantly impact patient outcomes.5 It is well known that ...
PurposeTextural measures have been widely explored as imaging biomarkers in cancer. However, their robustness under dynamic range and spatial resolution changes in brain 3D magnetic resonance images (MRI) has not been assessed. The aim of this work was to study potential variations of textural measures due to changes in MRI protocols.Materials and methodsTwenty patients harboring glioblastoma with pretreatment 3D T1-weighted MRIs were included in the study. Four different spatial resolution combinations and three dynamic ranges were studied for each patient. Sixteen three-dimensional textural heterogeneity measures were computed for each patient and configuration including co-occurrence matrices (CM) features and run-length matrices (RLM) features. The coefficient of variation was used to assess the robustness of the measures in two series of experiments corresponding to (i) changing the dynamic range and (ii) changing the matrix size.ResultsNo textural measures were robust under dynamic range changes. Entropy was the only textural feature robust under spatial resolution changes (coefficient of variation under 10% in all cases).ConclusionTextural measures of three-dimensional brain tumor images are not robust neither under dynamic range nor under matrix size changes. Standards should be harmonized to use textural features as imaging biomarkers in radiomic-based studies. The implications of this work go beyond the specific tumor type studied here and pose the need for standardization in textural feature calculation of oncological images.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.